LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sagar, Devi Rani; Staniaszek, Lydia E.; Okine, Bright N.; Woodhams, Stephen; Norris, Leonie M.; Pearson, Richard G.; Garle, Michael J.; Alexander, Stephen P.H.; Bennett, Andrew J.; Barrett, David A.; Kendall, David A.; Scammell, Brigitte E.; Chapman, Victoria (2010)
Publisher: Wiley
Journal: Arthritis and Rheumatism
Languages: English
Types: Article
Subjects: Experimental Arthritis

Classified by OpenAIRE into

mesheuropmc: lipids (amino acids, peptides, and proteins)
Objective. To investigate the impact of an experimental\ud model of osteoarthritis (OA) on spinal nociceptive\ud processing and the role of the inhibitory endocannabinoid\ud system in regulating sensory processing at the\ud spinal level.\ud Methods. Experimental OA was induced in rats\ud by intraarticular injection of sodium mono-iodoacetate\ud (MIA), and the development of pain behavior was\ud assessed. Extracellular single-unit recordings of wide\ud dynamic range (WDR) neurons in the dorsal horn were\ud obtained in MIA-treated rats and saline-treated rats.\ud The levels of endocannabinoids and the protein and\ud messenger RNA levels of the main synthetic enzymes for\ud the endocannabinoids (N-acyl phosphatidylethanolamine\ud phospholipase D [NAPE-PLD] and diacylglycerol\ud lipase [DAGL]) in the spinal cord were measured.\ud Results. Low-weight (10 gm) mechanically evoked\ud responses of WDR neurons were significantly (P < 0.05)\ud facilitated 28 days after MIA injection compared with\ud the responses in saline-treated rats, and spinal cord\ud levels of anandamide and 2-arachidonoyl glycerol\ud (2-AG) were increased in MIA-treated rats. Protein\ud levels of NAPE-PLD and DAGL, which synthesize\ud anandamide and 2-AG, respectively, were elevated in the\ud spinal cords of MIA-treated rats. The functional role of\ud endocannabinoids in the spinal cords of MIA-treated\ud rats was increased via activation of cannabinoid 1 (CB1)\ud and CB2 receptors, and blockade of the catabolism of\ud anandamide had significantly greater inhibitory effects\ud in MIA-treated rats compared with control rats.\ud Conclusion. Our findings provide new evidence\ud for altered spinal nociceptive processing indicative of\ud central sensitization and for adaptive changes in the\ud spinal cord endocannabinoid system in an experimental\ud model of OA. The novel control of spinal cord neuronal\ud responses by spinal cord CB2 receptors suggests that\ud this receptor system may be an important target for the\ud modulation of pain in OA.

Share - Bookmark

Funded by projects

  • WT | Effects of inflammatory pain...

Cite this article