LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kulsangcharoen, Ponggorn; Klumpner, Christian; Zhou, X.H.; Peng, C.; Chen, George Zheng; Rashed, Mohamed; Asher, Greg
Languages: English
Types: Unknown
Subjects:
The increase of renewable energy generation seen as the only way to ensure clean and sustainable development, is under scrutiny due to its intermittent nature and an insufficient development of com-plementary technologies such as electrical energy storage. There are quite a few energy storage devices available such as super/ultracapacitors that can address the high specific power applications compared to batteries, but have quite large size for same energy installed. Batteries on the other hand have much higher specific energy but cannot accommodate that easily the requirement to deliver quickly high power. This paper reports on the evaluation of a newly developed device, the supercapattery, that is a single device in which the core material is chemically engineered carbon nanotubes that can store similar amount of energy as a battery but release it faster.

Share - Bookmark

Download from

Cite this article