LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hawkesford, MJ; Buchner, P; Howarth, JR; Lu, C (2005)
Publisher: Backhuys Publishers
Languages: English
Types: Part of book or chapter of book
Subjects:
Sulfur is taken up by the plant and transported in the cell and around the plant mainly as sulfate. These processes are dependent on the sulfate transporters, and therefore the transporters have a central role in the management of plant sulfur nutrition for optimisation of growth. A large number of plant sulfate transporters have been cloned and comparative sequence analysis indicates that although they are all related, they cluster into a number of discrete sub-types. Within any plant species there appears to be approximately 14 members of this gene family; functional and expression data suggest that there is little redundancy and that each transporter has a specialised role. Furthermore the expression of many of the transporters is regulated by the sulfur-nutritional status of the plant; the regulation serves to optimize acquisition and utilization of sulfate. The mechanisms facilitating this regulation have been subject to intense investigation. One generally accepted model based on metabolite feedback regulation of gene expression is presented and critically evaluated. Genomic approaches focussed on identification of sensing and signal transduction pathways are described; transcriptome analysis of both field and controlled environment grown wheat has enabled the identification of many nutrient-regulated genes, including potential candidates for regulatory components.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • THE ARABIDOPSIS GENOME INITIATIVE. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. - Nature 408: 796.
    • BOLCHI A., PETRUCCO S., TENCA P. L., FORONI C. & OTTONELLO S. 1999. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down regulation by L-cysteine. - Plant Molecular Biology 39: 527-537.
    • BUCHNER P., PROSSER I. & HAWKESFORD M. J. 2004a. Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaploid wheats. - Genome 47: 526-534.
    • 2004b. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea L. as affected by atmospheric H2S and pedospheric sulfate nutrition. - Plant Physiol. 136: 3396-3408.
    • FENG Q., ZHANG Y., HAO P., WANG S., FU G., HUANG Y., LI Y., ZHU J., LIU Y., HU X. & al. 2002.
    • Sequence and analysis of rice chromosome 4. - Nature 420: 316-320.
    • GOFF S. A., RICKE D., LAN T. H., PRESTING G., WANG R., DUNN M., GLAZEBROOK J., SESSIONS A., OELLER P., VARMA H. & al. 2002. A draft sequence of the rice genome (Oryza sativa L.
    • ssp. japonica). - Science 296: 92-100.
    • HAWKESFORD M. J. 2000. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilisation efficiency. - J. Exp. Bot. 51: 131-138.
    •  2003. Transporter gene families in plants: THE sulphate transporter gene family - redundancy or specialization? - Physiol. Plant. 117: 155-165.
    •  2005. Sulphur. - In: BROADLEY M.R. & WHITE P. (Eds.), Nutritional genomics, pp. 87-111. - Blackwell Publishers, Oxford.
    •  & WRAY J. L. 2000. Molecular genetics of sulphur assimilation. - Advances in Botanical Research 33: 159-223.
    • HEISS S., SCHAFER H. J., HAAG-KERWER A. & RAUSCH T. 1999. Cloning sulfur assimilation genes of Brassica juncea L.: Cadmium differentially affects the expression of a putative lowaffinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. - Plant Molecular Biology 39: 847-57.
    • HIRAI M.Y., FUJIWARA T., AWAZUHARA M., KIMURA T., NOJI M. & SAITO K. 2003. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of Oacetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. - Plant J. 33: 651-663.
    •  , YANO M., GOODENOWE D.B., KANAYA S., KIMURA T., AWAZUHARA M., ARITA M., FUJIWARA T. & SAITO K. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. - Proc.
    • Nat. Acad. Sci., USA 101: 10205-10210.
    • HOPKINS L., PARMAR S., BOURANIS D.L., HOWARTH J.R. & HAWKESFORD M.J. 2004. Coordinated expression of sulfate uptake and components of the sulfate assimilatory pathway in maize. - Plant Biology 6: 408-414.
    • HOWARTH J. R., FOURCROY P., DAVIDIAN J-C., SMITH F. W. & HAWKESFORD M. J. 2003. Cloning of two contrasting sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae. - Planta 218: 58-64.
    • KATAOKA T., HAYASHI N., YAMAYA T., TAKAHASHI H. 2004a. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. - Plant Physiol. 136: 4198-4204.
    •  , WATANABE-TAKAHASHI A., HAYASHI N., OHNISHI M., MIMURA T., BUCHNER P., HAWKESFORD M.J., YAMAYA T. & TAKAHASHI H. 2004b. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. - Plant Cell 16: 2693-2704.
    • KUMAR S., TAMURA K., JAKOBSEN I. B. & NEI M. 2001. MEGA2: molecular evolutionary genetics analysis software. - Bioinformatics 17: 1244-1245.
    • 2003. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. - Plant Physiol. 132: 597-605.
    •  , NAKAMURA Y., WATANABE-TAKAHASHI A., INOUE E., YAMAYA T. & TAKAHASHI H. 2005.
    • Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. - Plant J. doi: 10.1111/j.1365-313X.2005.02363.x NEUENSCHWANDER U., SUTER M. & BRUNOLD C. 1991. Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. - Plant Physiol. 97: 253-258.
    • NIKIFOROVA V., FREITAG J., KEMPA S., ADAMIK M., HESSE H. & HOEFGEN R. 2003. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: Interlacing of biosynthetic pathways provides response specificity. - Plant J. 33: 633-650.
    • SASAKI T., MATSUMOTO T., YAMAMOTO K., SAKATA K., BABA T., KATAYOSE Y., WU J., NIIMURA Y., CHENG Z., NAGAMURA Y. & al. 2002. The genome sequence and structure of rice chromosome 1. - Nature 420: 312-316.
    • P. 2002. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. - Plant J. 29: 475-486.
    • SMITH F. W., EALING, P. M., HAWKESFORD M. J. & CLARKSON D.T. 1995a. Plant members of a family of sulfate transporters reveal functional subtypes. - Proc. Nat. Acad. Sci USA 92: 9373- 9377.
    •  , HAWKESFORD M.J., PROSSER I.M. & CLARKSON D.T. 1995b. Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. - Mol. Gen. Genet. 247: 709-715.
    • & WARRILOW A. G. S. 1997. Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. - Plant J. 12: 875-884.
    • TAKAHASHI H., ASANUMA W. & SAITO K. 1999a. Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulfate transporter isoform. - J. Exp. Bot. 50: 1713-1714.
    •  ,  , NOJI M. & SAITO K. 1996. Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. - FEBS Letters 392: 95-99.
    •  ,  , KIMURA A., WATANABE A. & SAITO K. 1999b. Identification of two leaf-specific sulfate transporter in Arabidopsis thaliana (accession no. AB012048 and AB004060) (PGR99-154). - Plant Physiol. 121: 686.
    •  , WATANABE A., SMITH F.W., BLAKE-KALFF M.M.A., HAWKESFORD M.J. & SAITO K. 2000.
    • Uptake and translocation of sulfate in Arabidopsis: three functional sulfate transporters are regulated by sulfur deficiency in different cell types. - Plant J. 23: 171-182.
    • , YAMAZAKI M., SASAKURA N., WATANABE A., LEUSTEK T., DE ALMEIDA-ENGLER J., ENGLER G., VAN MONTAGU M. & SAITO K. 1997. Regulation of sulfur assimilation in higher plants: A sulfate transporter induced in sulphate starved roots plays a central role in Arabidopsis thaliana. - Proc. Nat. Acad. Sci., USA 94: 11102-11107.
    • THOMPSON J. D., GIBSON T. J., PLEWNIAK F., JEANMOUGIN F. & HIGGINS D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. - Nucleic Acids Research 24: 4876-4882.
    • VIDMAR J. J., SCHJOERRING J. K., TOURAINE B. & GLASS A. D. M. 1999. Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. - Plant Molecular Biology 40: 883-892.
    •  , TAGMOUNT A., CATHALA N., TOURAINE B. & DAVIDIAN J.-C. 2000. Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. - FEBS Letters 475: 65-69.
    • YOSHIMOTO N., TAKAHASHI H., SMITH F. W., YAMAYA T. & SAITO K. 2002. Two distinct highaffinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis root. - Plant J. 29: 465-473.
    •  , INOUE E., SAITO K., YAMAYA T. & TAKAHASHI H. 2003. Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. - Plant Physiol. 131: 1511-1517.
    • 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). - Science 296: 79-92.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article