Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shahmohamadi, H; Rahmani, R; Rahnejat, H; Garner, CP; Dowson, D (2015)
Publisher: Springer Verlag
Languages: English
Types: Article
The paper presents a mixed thermo-hydrodynamic analysis of elliptic bore bearings using combined solution of Navier–Stokes, continuity and energy equations for multi-phase flow conditions. A vapour transport equation is also included to ensure continuity of flow in the cavitation region for the multiple phases as well as Rayleigh–Plesset to take into account the growth and collapse of cavitation bubbles. This approach removes the need to impose artificial outlet boundary conditions in the form of various cavitation algorithms which are often employed to deal with lubricant film rupture and reformation. The predictions show closer conformance to experimental measurements than have hitherto been reported in the literature. The validated model is then used for the prediction of frictional power losses in big end bearings of modern engines under realistic urban driving conditions. In particular, the effect of cylinder deactivation (CDA) upon engine bearing efficiency is studied. It is shown that big-end bearings losses contribute to an increase in the brake specific fuel consumption with application of CDA contrary to the gains made in fuel pumping losses to the cylinders. The study concludes that implications arising from application of new technologies such as CDA should also include their effect on tribological performance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Falkowski, A., McElwee, M., Bonne, M.: Design and development of the DaimlerChrysler 5.7L HEMI engine multi-displacement cylinder deactivation system. SAE Technical Paper 2004 01-2106 (2004). doi:10.4271/2004-01-2106
    • 2. Roberts, C.: Variable valve timing. SwRI Project No. 03.03271, Clean Diesel III Program (2004)
    • 3. Wilcutts, M., Switkes, J., Shost, M., Tripathi, A.: Design and benefits of dynamic skip fire strategies for cylinder deactivated engines. SAE Int. J. Engines 6(1), 278-288 (2013)
    • 4. Vafaei, S., Menday, M., Rahnejat, H.: Transient high-frequency elasto-acoustic response of a vehicular drivetrain to sudden throttle demand. Proc. IMechE Part K: J. Multi-Body Dyn. 216(1), 35-52 (2001)
    • 5. Rahnejat, H.: Multi-body Dynamics: Vehicles, Machines and Mechanisms. Professional Engineering Publishing, Bury St Edmunds (1998)
    • 6. Mohammadpour, M., Rahmani, R., Rahnejat, H.: Effect of cylinder deactivation on the tribo-dynamics and acoustic emission of overlay big end bearings. Proc. IMechE Part K: J. Multi-Body Dyn. 228(2), 138-151 (2014)
    • 7. Brewe, D.E., Ball, J.H., Khonsari, M.M.: Current research in cavitating fluid films. NASA Technical Memorandum 103184 (1990)
    • 8. Swift, H.W.: The stability of lubricating films in journal bearings. Minutes Proc. 233, 267-288 (1932)
    • 9. Stieber, W.: Das Schwimmlager. Verein Deutscher Ingenieurre (VDI), Berlin (1933)
    • 10. Skinner, S.: On the occurrence of cavitation in lubrication. Philos. Mag. Ser. 6 7(40), 329-335 (1904)
    • 11. Dowson, D., Taylor, C.M.: Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 35-66 (1979)
    • 12. Floberg, L., Jakobsson, B.: The Finite Journal Bearing Considering Vaporization, p. 190. Trans. Chalmers Univ. Tech, Goteborg (1957)
    • 13. Olsson, K.: Cavitation in Dynamically Loaded Bearings, p. 308. Trans. Chalmers Univ. Tech, Goteborg (1965)
    • 14. Coyne, J.C., Elrod, H.G.: Conditions for the rupture of a lubricating film, part 1: theoretical model. Trans. ASME J. Lubr. Technol. 92, 451-456 (1970)
    • 15. Coyne, J.C., Elrod, H.G.: Conditions for the rupture of a lubricating film, part 2: new boundary conditions for Reynolds' equation. ASME J. Lubr. Technol. Trans. 93, 156-167 (1971)
    • 16. Dowson, D., Taylor, C.M., Miranda, A.A.S.: The prediction of liquid film journal bearing performance with a consideration of lubricant film reformation part 1: theoretical results. Proc. IMechE J. Mech. Eng. Sci. 199(2), 95-102 (1985)
    • 17. Elrod, H.G.: A cavitation algorithm. Trans ASME J. Lubr. Technol. 103, 350-354 (1981)
    • 18. Dowson, D., Taylor, C.M., Miranda, A.A.S.: The prediction of liquid film journal bearing performance with a consideration of lubricant film reformation part 2: experimental results. Proc. IMechE J. Mech. Eng. Sci. 199(2), 103-111 (1985)
    • 19. Vijayaraghavan, D., Keith, T.G.: Development and evaluation of a cavitation algorithm. Tribol. Trans. 32(2), 225-233 (1989)
    • 20. Paydas, A., Smith, E.H.: A flow-continuity approach to the analysis of hydrodynamic journal bearings. Proc. IMechE J. Mech. Eng. Sci. 206, 57-69 (1992)
    • 21. Hirani, H., Athre, K., Biswas, S.: A simplified mass conserving algorithm for journal bearing under large dynamic loads. Int. J. Rotating Mach. 7(1), 41-51 (2001)
    • 22. Payvar, P., Salant, R.F.: A computational method for cavitation in a wavy mechanical seal. Trans. ASME J. Tribol. 114, 199-204 (1992)
    • 23. Xiong, S., Wang, Q.J.: Steady-state hydrodynamic lubrication modeled with the Payvar-Salant mass conservation model. Trans. ASME J. Tribol. 134(3), 031703 (2012)
    • 24. Giacopini, M., Fowell, M.T., Dini, D., Strozzi, A.: A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. Trans. ASME J. Tribol. 132, 041702-1-041702-12 (2010)
    • 25. Tucker, P.G., Keogh, P.S.: A generalized computational fluid dynamics approach for journal bearing performance prediction. Proc. IMechE Part J: J. Eng. Tribol. 209(2), 99-108 (1995)
    • 26. Dowson, D., Hudson, J.D., Hunter, B., March, C.N.: An experimental investigation of the thermal equilibrium of steadily loaded journal bearings. Proc. IMechE J. Mech. Eng. Sci. 181(3B), 70-80 (1966-1967)
    • 27. Boedo, S.: Practical Tribological Issues in Big End Bearings. Tribology and Dynamics of Engine and Powertrain, pp. 615-635. Woodhead Publishing, Cambridge (2010)
    • 28. Mishra, P.C., Rahnejat, H.: Tribology of big-end-bearings. In: Rahnejat, H. (ed.) Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends, pp. 635-659. Woodhead Publishing Ltd, Cambridge (2010)
    • 29. Rahnejat, H.: Multi-body dynamics: historical evolution and application. Proc. IMechE J. Mech. Eng. Sci. 214(1), 149-173 (2000)
    • 30. Thomson, W.T.: ''Vibration Theory and Applications'', 5th Impression. Prentice Hall Inc., Guildford, Surrey, UK (1976)
    • 31. Rahnejat, H. (ed.): Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends. Elsevier. ISBN: 978-84569-361-9 (2010)
    • 32. White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, New York (1991)
    • 33. Singhal, A.K., Li, H.Y., Athavale, M.M., Jiang, Y.: Mathematical basis and validation of the full cavitation model. ASME FEDSM'01, New Orleans, LA (2001)
    • 34. Ferron, J., Frene, J., Boncompain, R.: Study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiments. J. Tribol. 105(3), 422-428 (1983)
    • 35. Shi, F., Wang, Q.J.: A mixed-TEHD model for journal-bearing conformal contacts-part I: model formulation and approximation of heat transfer considering asperity contact. Trans. ASME J. Tribol. 120(2), 198-205 (1998)
    • 36. Khonsari, M.M., Beaman, J.J.: Thermohydrodynamic analysis of laminar incompressible journal bearings. ASLE Trans. 29(2), 141-150 (1986)
    • 37. Dowson, D., Higginson, G.R.: A numerical solution to the elastohydrodynamic problem. J. Mech. Eng. Sci. 1, 6-15 (1959)
    • 38. Yang, P., Cui, J., Jin, Z.M., Dowson, D.: Transient elastohydrodynamic analysis of elliptical contacts. Part 2: thermal and newtonian lubricant solution. Proc. IMechE Part J: J. Eng. Tribol. 219(187), 187-200 (2005)
    • 39. Houpert, L.: New results of traction force calculations in elastohydrodynamic contacts. Trans. ASME J. Tribol. 107, 241-248 (1985)
    • 40. Gohar, R., Rahnejat, H.: Fundamentals of Tribology. Imperial College Press, London (2008). ISBN: 13 978-1-84816-184-9
    • 41. Lee, P.M., Stark, M.S., Wilkinson, J.J., Priest, M., Lindsay Smith, J.R., Taylor, R.I., Chung, S.: The degradation of lubricants in gasoline engines: development of a test procedure to evaluate engine oil degradation and its consequences for rheology. Trib. Inter. Eng. Ser. 48, 593-602 (2005)
    • 42. Greenwood, J.A., Tripp, J.H.: The contact of two nominally flat rough surfaces. Proc. IMechE. J. Mech. Eng. Sci. 185, 625-633 (1970-1971)
    • 43. Teodorescu, M., Balakrishnan, S., Rahnejat, H.: Integrated tribological analysis within a multi-physics approach to system dynamics. Tribol. Interface Eng. Ser. 48, 725-737 (2005)
    • 44. Guangteng, G., Spikes, H.A.: An experimental study of film thickness in the mixed lubrication regime. Tribol. Ser. 32, 159-166 (1997)
    • 45. Greenwood, J.A., Williamson, B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300-319 (1966)
    • 46. Buenviaje, C.K., Ge, S.-R., Rafaillovich, M.H., Overney, R.M.: Atomic force microscopy calibration methods for lateral force, elasticity, and viscosity. Mater. Res. Soc. Symp. Proc. 522, 187-192 (1998)
    • 47. Styles, G., Rahmani, R., Rahnejat, H., Fitzsimons, B.: In-cycle and life-time friction transience in piston ring-liner conjunction under mixed regime of lubrication. Int. J. Engine Res. 15(7), 862-876 (2014)
    • 48. Eyring, H.: Viscosity, plasticity and diffusion as examples of reaction rates. J. Chem. Phys. 4, 283-291 (1926)
    • 49. Briscoe, B.J., Evans, D.C.B.: The shear properties of LangmuirBlodgett layers. Proc. R. Soc. Ser. A: Math. Phys. Sci. 380(177), 389-407 (1982)
    • 50. Langmuir, I.: The constitution and fundamental properties of solids and liquids II, liquids 1. J. Am. Chem. Soc. 39(9), 1847-1906 (1917)
    • 51. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)
    • 52. Manninen, M., Taivassalo, V., Kallio, S.: On the Mixture Model for Multiphase Flow. VTT Publications 288 Technical Research Centre of Finland (1996)
    • 53. Wang, X.L., Zhu, K.Q.: Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects. Tribol. Int. 33, 227-237 (2006)
    • 54. Morris, N., Rahmani, R., Rahnejat, H., King, P.D., Fitzsimons, B.: Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol. Int. 59, 248-258 (2013)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article