Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Joy, Edward J.M.; Kumssa, Diriba B.; Broadley, Martin R.; Watts, Michael J.; Young, Scott D.; Chilimba, Allan D. C.; Ander, E. Louise (2015)
Publisher: BMC
Languages: English
Types: Unknown
Background\ud Dietary mineral deficiencies are widespread globally causing a large disease burden. However, estimates of deficiency prevalence are often only available at national scales or for small population sub-groups with limited relevance for policy makers.\ud \ud Methods\ud This study combines food supply data from the Third Integrated Household Survey of Malawi with locally-generated food crop composition data to derive estimates of dietary mineral supplies and prevalence of inadequate intakes in Malawi.\ud \ud Results\ud We estimate that >50 % of households in Malawi are at risk of energy, calcium (Ca), selenium (Se) and/or zinc (Zn) deficiencies due to inadequate dietary supplies, but supplies of iron (Fe), copper (Cu) and magnesium (Mg) are adequate for >80 % of households. Adequacy of iodine (I) is contingent on the use of iodised salt with <1 % of households getting adequate I supply from food alone. Hidden hunger is likely to be widespread: among households with adequate energy supply, 30, 56 and 27 % had inadequate supplies of Ca, Se and Zn, respectively. Over 80 % of the poorest households had inadequate dietary supplies of Ca and Zn compared to <30 % of the wealthiest households; >80 % of rural households living on low-pH soils had inadequate dietary Se supplies compared to 55 % on calcareous soils; concurrent inadequate supplies of Ca, Se and Zn were observed in >80 % of the poorest rural households living in areas with non-calcareous soils. Prevalence of inadequate dietary supplies was greater in rural than urban households for all nutrients except Fe.\ud \ud Interventions to address dietary mineral deficiencies were assessed. For example, an agronomic biofortification strategy could reduce the prevalence of inadequate dietary Se supplies from 82 to 14 % of households living in areas with low-pH soils, including from 95 to 21 % for the poorest subset of those households. If currently-used fertiliser alone were enriched with Se then the prevalence of inadequate supplies would fall from 82 to 57 % with a cost per alleviated case of dietary Se deficiency of ~ US$ 0.36 year−1.\ud \ud Conclusions\ud Household surveys can provide useful insights into the prevalence and underlying causes of dietary mineral deficiencies, allowing disaggregation by spatial and socioeconomic criteria. Furthermore, impacts of potential interventions can be modelled.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Food and Agriculture Organization of the United Nations. The state of food security in the World: The multiple dimensions of food security. Rome: FAO; 2013.
    • 2. World Health Organization. Worldwide prevalence of anaemia 1993-2005. In: de Benoist B, McLean E, Egli I, Cogswell M, editors. WHO global database on anaemia. Geneva: WHO; 2008.
    • 3. World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO global database on vitamin A deficiency. Geneva: WHO; 2009.
    • 4. Stein AJ. Global impacts of human mineral malnutrition. Plant Soil. 2010;335:133-54. doi:10.1007/s11104-009-0228-2.
    • 5. Wessells KP, Brown KH. Estimating global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One. 2012;7, e50568. doi:10.1371/journal.pone.0050568.
    • 6. Andersson M, Karumbunathan V, Zimmermann MB. Global iodine status in 2011 and trends over the past decade. J Nutr. 2012;142:744-50. doi:10.3945/jn.111.149393.
    • 7. Lim SS, Vos T, Flaxman AD, Danaei G, Shiuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224-60. doi:10.1016/S0140-6736(12)61766-8.
    • 8. Muthayya S, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE. The global hidden hunger indices and maps: An advocacy tool for action. PLoS One. 2013;8, e67860. doi:10.1371/journal.pone.0067860.
    • 9. Joy EJM, Ander EL, Young SD, Black CR, Watts MJ, Chilimba ADC, et al. Dietary mineral supplies in Africa. Physiol Plantarum. 2014;151:208-29. doi:10.1111/ppl.12144.
    • 10. Kumssa DB, Joy EJM, Ander EL, Watts MJ, Young SD, Walker S, et al. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci Rep. 2015;5:10974. doi:10.1038/srep10974.
    • 11. Combs GF. Selenium in global food systems. Br J Nutr. 2001;85:517-47.
    • 12. Lyons GH, Genc Y, Stangoulis JCR, Palmer LT, Graham RD. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res. 2005;103:155-68. doi:10.1385/BTER:103:2:155.
    • 13. Broadley MR, Chilimba ADC, Joy EJM, Young SD, Black CR, Ander EL, et al. Dietary requirements for magnesium, but not calcium, are likely to be met in Malawi based on national food supply data. Int J Vitam Nutr Res. 2012;82:192-9. doi:10.1024/0300-9831/a000111.
    • 14. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14:1337-83. doi:10.1089/ars.2010.3275.
    • 15. Gibson RS, Hess SY, Hotz C, Brown KH. Indicators of zinc status at the population level: a review of the evidence. Br J Nutr. 2008;99:S14-23. doi:10.1017/S0007114508006818.
    • 16. Stein AJ. Rethinking the measurement of undernutrition: Should we look at possible causes or actual effects? Global Food Secur. 2014;3:193-9. doi:10.1016/j.gfs.2014.09.003.
    • 17. Sandström B. Dietary pattern and zinc supply. In: Mills CF, editor. Zinc in Human Biology. Devon, UK: Springer; 1989. p. 350-63.
    • 18. Joy EJM, Broadley MR, Young SD, Black CR, Chilimba ADC, Ander EL, et al. Soil type influences crop mineral composition in Malawi. Sci Total Environ. 2015;505:587-95. doi:10.1016/j.scitotenv.2014.10.038.
    • 19. Ferguson EL, Gibson RS, Weaver SD, Heywood P, Heywood A, Yaman C. The mineral content of commonly consumed Malawian and Papua New Guinean foods. J Food Compos Anal. 1989;2:260-72.
    • 20. Gibson RS, Huddle JM. Suboptimal zinc status in pregnant Malawian women: its association with low intakes of poorly available zinc, frequent reproductive cycling, and malaria. Am J Clin Nutr. 1998;67:702-9.
    • 21. Eick F, Maleta K, Govasmark E, Duttaroy AK, Bjune AG. Food intake of selenium and sulphur amino acids in tuberculosis patients and healthy adults in Malawi. Int J Tuberc Lung Dis. 2009;13:1313-5.
    • 22. Hurst R, Siyame EWP, Young SD, Chilimba ADC, Joy EJM, Black CR, et al. Soiltype influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Sci Rep. 2013;3:1425. doi:10.1038/srep01425.
    • 23. Siyame EWP, Hurst R, Wawer AA, Young SD, Broadley MR, Chilimba ADC, et al. A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: a cross-sectional study. Int J Vitam Nutr Res. 2013;83:176-87. doi:10.1024/0300-9831/a000158.
    • 24. Dickinson N, Rankin J, Pollard M, Maleta K, Robertson C, Hursthouse A. Evaluating environmental and social influences on iron and zinc status of pregnant subsistence farmers in two geographically contrasting regions of Southern Malawi. Sci Total Environ. 2014;500-501:199-210. doi:10.1016/j.scitotenv.2014.08.087.
    • 25. Gibson RS, Wawer AA, Fairweather-Tait SJ, Hurst R, Young SD, Broadley MR, et al. Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. J Food Compos Anal. 2015;40:19-23. doi:10.1016/j.jfca.2014.11.016.
    • 26. Food and Agriculture Organization of the United Nations. Food Balance Sheets: a handbook. FAO, Rome, 2001. http://www.fao.org/docrep/003/ x9892e/x9892e00.htm. Accessed May 2013.
    • 27. Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts MJ, et al. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep. 2011;1:72. doi:10.1038/srep00072.
    • 28. National Statistics Office of the Republic of Malawi. Malawi Third Integrated Household Survey (IHS3). NSO, Zomba, Malawi and World Bank Living Standards and Measurements Surveys, 2012. http://econ.worldbank.org/ WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK: 23590235~pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html. Accessed September 2013.
    • 29. Ecker O, Qaim M. Analyzing nutritional impacts of policies: an empirical study for Malawi. World Dev. 2011;39:412-28.
    • 30. Verduzco‐Gallo I, Ecker O, Pauw K. Changes in food and nutrition security in Malawi: Analysis of recent survey evidence. Working Paper 06. Washington DC, USA: International Food Policy Research Institute; 2014.
    • 31. National Statistics Office of the Republic of Malawi. Malawi Third Integrated Household Survey: Household socioeconomic characteristics report. NSO, Zomba, Malawi, 2012. http://siteresources.worldbank.org/INTLSMS/Resources/ 3358986-1233781970982/5800988-1271185595871/IHS3_Report.pdf. Accessed September 2013.
    • 32. World Bank. Living Standards Measurement Study: Malawi IHS3 Survey Data Availability. http://go.worldbank.org/DLFL1FPEP0. Accessed September 2013.
    • 33. National Statistics Office of the Republic of Malawi. Malawi Third Integrated Household Survey: Basic information document. NSO, Zomba, Malawi and World Bank Living Standards and Measurements Surveys, 2012. http:// siteresources.worldbank.org/INTLSMS/Resources/3358986-1233781970982/ 5800988-1271185595871/IHS3.BID.FINAL.pdf. Accessed September 2013.
    • 34. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173:677-702. doi:10.1111/j.1469-8137.2007.01996.x.
    • 35. Yruela I. Copper in plants. Braz J Plant Physiol. 2005;17:1. doi:10.1590/S1677-04202005000100012.
    • 36. Lukmanji Z, Hertzmark E, Mlingi N, Assey V, Ndossi G, Fawzi W. Tanzania food composition tables. Boston, USA; Tanzania: Harvard School of Public Health, Boston, Muhimbili University College of Health and Allied Sciences, Dar es Salaam, Tanzania Food and Nutrition Center, Dar es Salaam; 2008.
    • 37. United States Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 26, 2013. http://www.ars.usda.gov/Services/docs.htm?docid=24936. Accessed September 2014.
    • 38. Food and Agriculture Organization of the United Nations. Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. Rome: FAO; 2001.
    • 39. World Health Organization and Food and Agriculture Organization of the United Nations. Vitamin and mineral requirements in human nutrition. Geneva: WHO; 2004.
    • 40. Institute of Medicine of the National Academies. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington DC: National Academies Press; 2000.
    • 41. Institute of Medicine of the National Academies. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington DC: National Academies Press; 2002.
    • 42. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2012 Revision. http://esa.un.org/ unpd/wpp/Download/Standard/Population/. Accessed September 2014.
    • 43. Green R, Nanthambwe S. Land Resources Appraisal of the Agricultural Development Divisions. Field Document No. 32. Ministry of Agriculture, UNDP, FAO: Lilongwe, Malawi. 1992.
    • 44. Weisell R, Dop MC. The Adult Male Equivalent concept and its application to Household Consumption and Expenditures Surveys (HCES). Food Nutr Bull. 2012;33:S157-62.
    • 45. Famine Early Warning System (FEWS NET). Malawi food security outlook update. June 2010. http://www.fews.net/sites/default/files/documents/ reports/Malawi_Outlook_January_2010_final.pdf. Accessed March 2015.
    • 46. Public Health England and Food Standards Agency. National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (combined) of the Rolling Programme (2008/2009 - 2011/2012). Bates B, Lennox A, Prentice A, Bates C, Page P, Nicholson S, Swan G, editors. Public Health England, London, 2014.
    • 47. Diosady LL, Alberti JO, Venkatesh Mannar MG, FitzGerald S. Stability of iodine in iodized salt used for correction of iodine-deficiency disorders. II Food Nutr Bull. 1998;19:240-50.
    • 48. Watts MJ, Joy EJM, Young SD, Broadley MR, Chilimba ADC, Gibson RS, et al. Iodine source apportionment in the Malawian diet. Sci Rep. 2015;5:15251. doi:10.1038/srep15251.
    • 49. Joy EJM, Young SD, Black CR, Ander EL, Watts MJ, Broadley MR. Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant Soil. 2013;368:129-37. doi:10.1007/s11104-012-1388-z.
    • 50. Kumssa DB, Joy EJM, Ander EL, Watts MJ, Young SD, Rosanoff A, et al. Global magnesium (Mg) supply in the food chain. Crop Pasture Sci. 2015;66. doi:10.1071/CP15096.
    • 51. Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2010. IHME, Seattle. http://ghdx.healthdata.org/record/global-burden-diseasestudy-2010-gbd-2010-results-risk-factor-1990-2010. Accessed July 2014.
    • 52. Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197-223. doi:10.1016/S0140-6736(12)61689-4.
    • 53. Murray CJL. Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bull World Health Organ. 1994;72:429-45.
    • 54. Pauw K, Beck U, Mussa R. Did rapid smallholder-led agricultural growth fail to reduce rural poverty? Making sense of Malawi's poverty puzzle. A United Nations University WIDER Working Paper, 2014. https://www.wider.unu.edu/ publication/did-rapid-smallholder-led-agricultural-growth-fail-reduce-ruralpoverty. Accessed October 2014.
    • 55. Engel E. Die produktions-und konsumptionsverhältnisse des königreichs Sachsen. Zeitschrift des Statistischen Bureaus des Königlich Sächsischen Ministerium des Inneren. 1857;8:1-54
    • 56. Kaus W. Beyond Engel's law - A cross-country analysis. J Socio Econ. 2013; 47:118-34. doi:10.1016/j.socec.2013.10.001.
    • 57. Food and Agriculture Organization of the United Nations. Food Balance Sheets. http://faostat3.fao.org/download/FB/FBS/E. Accessed May 2014.
    • 58. Monsen ER. Iron nutrition and absorption: dietary factors which impact iron bioavailability. J Am Diet Assoc. 1988;88:786-90.
    • 59. Verhoef H, West CE, Ndeto P, Burema J, Beguin Y, Kok FJ. Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomatic malaria. Am J Clin Nutr. 2001;74:767-75.
    • 60. Glinz D, Hurrell RF, Righetti AA, Zeder C, Adiossan LG, Tjalsma H, et al. In Ivorian school-age children, infection with hookworm does not reduce dietary iron absorption or systemic iron utilization, whereas afebrile Plasmodium falciparum infection reduces iron absorption by half. Am J Clin Nutr. 2015;101:462-70. doi:10.3945/ajcn.114.090175.
    • 61. National Statistics Office of the Republic of Malawi. Malawi Demographic and Health Survey 2010. NSO, Zomba, Malawi, 2011. http://dhsprogram. com/pubs/pdf/FR247/FR247.pdf. Accessed December 2013.
    • 62. Iodine Global Network. Global iodine nutrition scorecard for 2014. IGN, Zurich, 2014. http://ign.org/cm_data/Scorecard_IGN_website_02_03_2015. pdf. Accessed January 2015.
    • 63. World Health Organization. Iodine status worldwide. In: de Benoist B, Andersson M, Egli I, Takkouche B, Allen H, editors. WHO Global Database on Iodine Deficiency. Geneva: WHO; 2004.
    • 64. Mdebwe HJ, Banda TW. A survey report on the trend of prevalence of goitre in junior primary school pupils and coverage of iodized salt at household level in seven districts in northern and central regions of Malawi. Lilongwe, Malawi: Ministry of Health and Population; 1996.
    • 65. Zimmermann MB. Flawed approach in the GBD 2010 for iodine deficiency compromises its findings. IDD newsletter, February 2013. http://ign.org/ newsletter/idd_feb13_global_burden_of_disease.pdf. Accessed February 2015.
    • 66. Kalimbira AA, Chilima DM, Mtimuni BM, Mvula N. Knowledge and practices related to use of iodised salt among rural Malawian households. J Agric Environ Sci Technol. 2005;3:73-82.
    • 67. Bohn T, Davidsson L, Walczyk T, Hurrell RF. Phytic acid added to whitewheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr. 2004;79:418-23.
    • 68. Fredlund K, Isaksson M, Rossander-Hulthén L, Almgren A, Sandberg AS. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. J Trace Elem Med Bio. 2006;20:49-57. doi:10.1016/j.jtemb.2006.01.003.
    • 69. Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR. Zincenriched fertilisers as a potential public health intervention in Africa. Plant Soil. 2015;389:1-24. doi:10.1007/s11104-015-2430-8.
    • 70. World Health Organization and Food and Agriculture Organization of the United Nations. Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation. Geneva: WHO; 2003.
    • 71. World Health Organization. Reducing salt intake in populations: Report of a WHO forum and technical meeting, 5-7 October 2007, Paris, France. Geneva: WHO; 2007.
    • 72. Chilimba ADC, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop Res. 2012;125:118-28. doi:10.1016/j.fcr.2011.08.014.
    • 73. Chilimba ADC, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR. Assessing residual availability of selenium applied to maize crops in Malawi. Field Crop Res. 2012;134:11-8. doi:10.1016/j.fcr.2012.04.010.
    • 74. Chilimba ADC, Young SD, Joy EJM. Agronomic biofortification of maize, soybean and groundnut with selenium in intercropping and sole cropping systems. Afr J Agric Res. 2014;9:3620-6. doi:10.5897/AJAR2014.8978.
    • 75. Alfthan G, Eurola M, Ekholm P, Venäläinen E-R, Root T, Korkalainen K, et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J Trace Elem Med Bio. 2015;31:142-7. doi:10.1016/j.jtemb.2014.04.009.
    • 76. Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil. 2010;332:5-18. doi:10. 1007/s11104-009-0234-4.
    • 77. White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49-84. doi:10.1111/j.1469-8137.2008.02738.x.
    • 78. Fiedler JL, Lividini K, Zulu R, Kabaghe G, Tehinse J, Bermudez OI. Identifying Zambia's industrial fortification options: Toward overcoming the food and nutrition information gap-induced impasse. Food Nutr Bull. 2013;34:480-500.
    • 79. Lyons GH, Stangoulis JCR, Graham RD. High selenium wheat: biofortification for better health. Nutr Res Rev. 2003;16:45-60.
    • 80. International Fertilizer Development Center Malawi fertilizer assessment. Alabama, U.S.A: IFDC. 2013https://ifdcorg.files.wordpress.com/2015/04/ malawi-fertilizer-assessment.pdf. Accessed June 2014.
    • 81. Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, et al. Biofortification of UK food crops with selenium. Proc Nutr Soc. 2006;65:169-81. doi:10.1079/PNS2006490.
    • 82. Fiedler JL. Towards overcoming the food consumption information gap: Strengthening household consumption and expenditures surveys for food and nutrition policymaking. Global Food Secur. 2013;2:56-63. doi:10.1016/j.gfs.2012.09.002.
    • 83. Archer E, Hand GA, Blair SN. Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971-2010. PLoS One. 2013;8, e76632. doi:10.1371/journal.pone.0076632.
    • 84. Rennie KL, Coward A, Jebb SA. Estimating underreporting of energy intake in dietary surveys using an individualised method. Br J Nutr. 2007;97:1169-76. doi:10.1017/S0007114507433086.
    • 85. Bentley ME, Cornelli AL, Piwoz E, Moses A, Nkhoma J, Tohill BC, et al. Perceptions of the role of maternal nutrition in the HIV-positive breastfeeding women in Malawi. J Nutr. 2005;135:945-9.
    • 86. Bouis HE, Eozenou P, Rahman A. Food prices, household income, and resource allocation: Socioeconomic perspectives on their effects on dietary quality and nutritional status. Food Nutr Bull. 2011;32:S14-23.
    • 87. Fordyce FM, Johnson CC, Navaratna URB, Appleton JD, Dissanayake CB. Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci Total Environ. 2000;263:127-41. doi:10.1016/S0048-9697(00)00684-7.
    • 88. Voutchkova DD, Ernstsen V, Hansen B, Sørensen BL, Zhang C, Kristiansen SM. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: A new conceptual model for Denmark. Sci Total Environ. 2014;493:432-44. doi:10.1016/j.scitotenv.2014.06.008.
  • No similar publications.

Share - Bookmark

Cite this article