Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hawkins, Ed; Tietsche, Steffen; Day, Jonathan J.; Melia, Nathanael; Haines, Keith; Keeley, Sarah (2016)
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y. 2006. The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate 19: 1327-1353, doi:10.1175/JCLI3712.1.
    • Jolliffe IT, Stephenson DB (eds). 2012. Forecast Verification: A Practicioner's Guide in Atmospheric Science. Wiley-Blackwell.
    • Jung T, Kasper MA, Semmler T, Serrar S. 2014. Arctic influence on subseasonal midlatitude prediction. Geophysical Research Letters 41(10): 3676-3680, doi:10.1002/2014GL059961.
    • Juricke S, Lemke P, Timmermann R, Rackow T. 2013. Effects of stochastic ice strength perturbation on arctic finite element sea ice modeling. J. Climate 26: 3785-3802, doi:10.1175/JCLI-D-12-00388.1.
    • Koenigk T, Mikolajewicz U. 2009. Seasonal to interannual climate predictability in mid and high northern latitudes in a global coupled model. Climate Dynamics 32: 783-798, doi:10.1007/s00382-008-0419-1.
    • Kumar A, Hoerling MP, Barnston AG. 2001. Seasonal Predictions, Probabilistic Verifications, and Ensemble Size. doi:10.1175/1520- e 0442(2001)014¡1671:SPPVAE¿2.0.CO;2.
    • Lindsay RW, Zhang J, Schweiger AJ, Steele MA. 2008. Seasonal l predictions of ice extent in the arctic ocean. JGR: Oceans 113, doi: 10.1029/2007JC004259.
    • Liu C, Haines K, Iwi A, Smith D. 2012. Comparing the UK Met Office Climate PredicctionSystem (DePreSys) with idealized predictability in the HadCM3 model. QJRMS 138: 81-90, doi:10.1002/qj.904.
    • MerryfieildWJ, Lee WS, Wang W, Chen M, Kumar A. 2013. Multi-system seasonal predictions of Arctic sea ice. Geophysical Research Letters 40: 1551-t1556, doi:10.1002/grl.50317.
    • Msadek R, Vecchi GA, Winton M, Gudgel RG. 2014. Importance of initial conditrions in seasonal predictions of arctic sea ice extent. Geophysical Research Letters 41: 5208-5215, doi:10.1002/2014GL060799.
    • Murphy AH. 1973. A new vector partition of the probability score. J. Appl. Meteor. 12: 595-600, doi:10.1175/1520- 0450(1973)012¡0595:ANVPOT¿2.0.CO;2.
    • Murphy AH. 1988. Skill Scores Based on the Mean Square Error and Their RelatiAonshipsto the Correlation Coefficient. Mon. Weather Rev. 116(12): 2417-2424.
    • Otto FEL, Ferro CAT, Fricker TE, Suckling EB. 2013. On judging the credibility of climate predictions. Climatic Change in press, doi: 10.1007/s10584-013-0813-5.
    • Peterson dArribas K, A, Hewitt H, Keen A, Lea D, McLaren A. 2015. Assessing the forecast skill of arctic sea ice extent in the glosea4 seasonal prediction system. Climate Dynamics 44: 147-162, doi:10.1007/s00382-014-2190-9.
    • Pohlmann eH, Botzet M, Latif M, Roesch A, Wild M, Tschuck P. 2004. Estimating the Decadal Predictability of a Coupled AOGCM. J. Clim. 17: 4463-4472.
    • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. pRes. 108: 4407, doi:10.1029/2002JD002670.
    • Robson JI, Sutton R, Lohmann K, Smith D, Palmer M. 2012. Causes of the rapid warming of the North Atlantic ocean in the mid 1990s. J. Climate : in pressdoi:10.1175/JCLI-D-11-00443.1.
    • Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT, Dunstone N, Eade R, Fereday D, Folland CK, Gordon M, Hermanson L, Knight JR, Lea DJ, MacLachlan C, Maidens A, Martin M, Peterson AK, Smith D, Vellinga M, Wallace cE, Waters J, Williams A. 2014. Skillful long-range prediction of european and north american winters. Geophysical Research Letters 41(7): 2514-2519, doi:10.1002/2014GL059637.
    • Schroeder cD,Feltham DL, Flocco D, Tsamados M. 2014. September arctic sea-ice minimum predicted by spring melt-pond fraction. Nature Climate Change 4: 353-357, doi:10.1038/nclimate2203.
    • Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, A King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM. 2009. U.K. HiGEM: The New U.K. High-Resolution Global Environment ModelModel Description and Basic Evaluation. J. Clim. 22: 1861-1896, doi:10.1175/2008JCLI2508.1.
    • Sigmond M, Fyfe JC, Flato GM, Kharin VV, Merryfield WJ. 2013. Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophysical Research Letters 40: 529-534, doi:10.1002/grl.50129.
    • Smith DM, Scaife AA, Boer GJ, Caian M, Doblas-Reyes FJ, Guemas V, Hawkins E, Hazeleger W, Hermanson L, Ho CK, Ishii M, Kharin V, Kimoto M, Kirtman B, Lean J, Matei D, Merryfield WJ, Muller WA, Pohlmann H, Rosati A, Wouters B, Wyser K. 2013. Real-time multi-model decadal climate predictions. Climate Dynamics 41: 2875, doi:10.1007/s00382-012- 1600-0.
    • Stroeve J, Hamilton LC, Bitz CM, Blanchard-Wrigglesworth E. 2014. Predicting september sea ice: Ensemble skill of the search sea ice outlook 2008-2013. Geophysical Research Letters 41: 2411-2418, doi: 10.1002/2014GL059388.
    • Tietsche S, Day JJ, Guemas V, Hurlin WJ, Keeley S, Matei D, Msadek R, Collins M, Hawkins E. 2014. Seasonal to interannual Arctic seaice predictability in current GCMs. Geophys. Res. Lett 41: 1035, doi: 10.1002/2013GL058755.
    • Tietsche S, Notz D, Jungclaus JH, Marotzke J. 2013a. Assimilation of sea-ice concentration in a global climate model - physical and statistical aspects. Ocean Science 9: 19-36, doi:10.5194/os-9-19-2013.
    • Tietsche S, Notz D, Jungclaus JH, Marotzke J. 2013b. Predictability of large interannual Arctic sea-ice anomalies. Clim. Dyn. 41(9): 2511-2526, doi: 10.1007/s00382-013-1698-8.
    • Wang W, Chen M, Kumar A. 2013. Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev. 141: 1375- 1394, doi:10.1175/MWR-D-12-00057.1.
    • Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Dqu M, Keenlyside N, MacVean M, Navarra A, Rogel P. 2009. ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions: Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophysical Research Letters 36, doi:10.1029/2009GL040896.
    • Weisheimer A, Palmer TN, Doblas-Reyes FJ. 2011. Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophysical Research Letters 38(16), doi:10.1029/2011GL048123.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article