Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lever, L.; Valavanis, A.; Ikonic, Z.; Kelsall, R. W. (2008)
Publisher: American Institute of Physics
Languages: English
Types: Article
The prospect of developing a silicon laser has long been \ud an elusive goal, mainly due to the indirect band gap and large effective carrier masses. We present a design for a terahertz intersubband laser grown on the [111] crystal plane and simulate performance using a rate equation method including scattering due to alloy disorder, interface roughness, carrier-phonon and Coulombic interactions. We predict gain greater than 40 cm-1 and a threshold current density of 70 A/cm2.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 )120 m
    • (A100
    • isn 80
    • tn 60
    • uC40
    • Electric field (kV/cm) 14 16 ∗ Electronic address:
    • [1] L. Pavesi, Towards the First Silicon Laser (Kluwer Academic Publishers, 2003).
    • [2] G. Dehlinger, L. Diehl, U. Gennser, J. Sigg, J. Faist, K. Ensslin, D. Grutzmacher, and E. Muller, Science 290, 2277 (2000).
    • [3] R. Bates, S. A. Lynch, D. J. Paul, Z. Ikoni´c, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, et al., Appl. Phys. Lett. 83, 4092 (2003).
    • [4] R. W. Kelsall and R. A. Soref, Int. J. High Speed Electron. Syst. 13, 547 (2003).
    • [5] K. Driscoll and R. Paiella, Appl. Phys. Lett. 89, 191110 (2006).
    • [6] G. Sun, H. H. Cheng, J. Men´endez, J. B. Khurgin, and R. A. Soref, Appl. Phys. Lett. 90, 251105 (2007).
    • [7] J. Lumin. 121, 311 (2006).
    • [8] A. Rahman, M. S. Lundstrom, and A. W. Ghosh, J. Appl. Phys. 97, 053702 (2005).
    • [9] M. Kahan, M. Chi, and L. Friedman, J. Appl. Phys. 75, 8012 (1994).
    • [10] M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).
    • [11] C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
    • [12] J. Weber and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).
    • [13] S. Smirnov and H. Kosina, Solid-State Electron. 48, 1325 (2004).
    • [14] Z. Ikonic, P. Harrison, and R. W. Kelsall, J. Appl. Phys. 96, 6803 (2004).
    • [15] T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, J. Appl. Phys. 93, 1586 (2003).
    • [16] M. Califano, N. Q. Vinh, P. J. Phillips, Z. Ikonic, R. W. Kelsall, P. Harrison, C. R. Pidgeon, B. N. Murdin, D. J. Paul, P. Townsend, et al., Phys. Rev. B 75, 045338 (pages 6) (2007).
    • [17] F. Monsef, P. Dollfus, S. Galdin, and A. Bournel, Phys. Rev. B 65, 212304 (2002).
    • [18] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Chichester, 2005), 2nd ed.
    • [19] V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, J. Appl. Phys. 99, 103106 (pages 9) (2006).
    • [20] A. Valavanis, Z. Ikoni´c, and R. W. Kelsall (2007).
    • [21] R. W. K. Z Ikonic and P. Harrison, Semicond. Sci. Technol. 19, 76 (2004).
    • [22] B. S. Williams, Nat. Photonics 1, 517 (2007).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article