LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Constantinescu, Gabriel; Hine, Nicholas DM (2015)
Publisher: Physical Review B
Languages: English
Types: Article
Subjects: QD
While monolayer forms of two-dimensional materials are well characterized both experimentally and theoretically, properties of bilayer heterostructures are not nearly so well known. We employ high-accuracy linear-scaling density functional theory calculations utilizing nonlocal van der Waals functionals to explore the possible constructions of the MoS2/MoSe2 interface. Utilizing large supercells, we vary rotation, translation, and separation of the layers without introducing unrealistic strain. The energy landscape shows very low variations under rotation, with no strongly preferred alignments. By unfolding the spectral function into the primitive cells, we show that the monolayers are more independent than in homo-bilayers and that the electronic band structure of each layer is tunable through rotation, thus influencing hole effective masses.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • y 1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
    • Khotkevich, S. V. Morozov, and A. K. Geim, PNAS 102,
    • 10451 (2005). 2 Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11,
    • 3768 (2011). 3 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti,
    • and A. Kis, Nat Nano 6, 147 (2011). 4 B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano
    • 5, 9934 (2011). 5 Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett.
    • 12, 1136 (2012). 6 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y.
    • Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010). 7 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and
    • M. Chhowalla, Nano Lett. 11, 5111 (2011). 8 Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu,
    • Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6, 74 (2012). 9 K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat Nano 7,
    • 494 (2012). 10 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat Nano
    • 7, 490 (2012). 11 T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu,
    • P. Tan, E. Wang, B. Liu, et al., Nat Commun 3, 887 (2012). 12 R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi,
    • K. Miyamoto, T. Okuda, et al., Nat Nano 9, 611 (2014). 13 J. N. Coleman, M. Lotya, A. ONeill, S. D. Bergin, P. J.
    • et al., Science 331, 568 (2011). 14 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman,
    • and M. S. Strano, Nat. Nano. 7, 699 (2012). 15 A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83,
    • 245213 (2011). 16 A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). 17 S. Shallcross, S. Sharma, and O. A. Pankratov, Phys. Rev.
    • Lett. 101, 056803 (2008). 18 S. Kim, J. Ihm, H. Choi, and Y.-W. Son, Phys. Rev. Lett.
    • 100, 176802 (2008). 19 Y. Qi, S. Rhim, G. Sun, M. Weinert, and L. Li, Phys. Rev.
    • Lett. 105, 085502 (2010). 20 J. Hass, F. Varchon, J. Milln-Otoya, M. Sprinkle,
    • and E. Conrad, Phys. Rev. Lett. 100, 125504 (2008). 21 A. Varykhalov, J. Sanchez-Barriga, A. Shikin, C. Biswas,
    • Rev. Lett. 101, 157601 (2008). 22 M. Iannuzzi, I. Kalichava, H. Ma, S. Leake, H. Zhou, G. Li,
    • B 88, 125433 (2013). 23 A. M. van der Zande, J. Kunstmann, A. Chernikov, D. A.
    • L. Wang, F. Zhang, et al., Nano Lett. 14, 3869 (2014). 24 K. Kosmider and J. Fernandez-Rossier, Phys. Rev. B 87,
    • 075451 (2013). 25 H.-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 88,
    • 085318 (2013). 26 J. Kang, J. Li, S.-S. Li, J.-B. Xia, and L.-W. Wang, Nano
    • Lett. 13, 5485 (2013). 27 M. Bernardi, M. Palummo, and J. C. Grossman, Nano
    • Lett. 13, 3664 (2013). 28 L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D.
    • T. Georgiou, S. V. Morozov, et al., Science 340, 1311
    • (2013). 29 M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdorfer, and
    • T. Mueller, Nano Lett. 14, 4785 (2014). 30 T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gor-
    • Haigh, O. Makarovsky, et al., Nat Nano 8, 100 (2013). 31 C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein,
    • and M. S. Strano, ACS Nano 8, 5790 (2014). 32 Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu,
    • Lett. 12, 2784 (2012). 33 H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol,
    • Unal, et al., PNAS p. 201405435 (2014). 34 H. Terrones, F. Lopez-Uras, and M. Terrones, Sci. Rep. 3
    • (2013). 35 H. Je rey Gardner, A. Kumar, L. Yu, P. Xiong, M. P.
    • Nature Physics 7, 895 (2011). 36 J. Biscaras, N. Bergeal, S. Hurand, C. Feuillet-Palma,
    • J. Lesueur, Nat Mater 12, 542 (2013). 37 C.-K. Skylaris, P. D. Haynes, A. A. Mosto , and M. C.
    • Payne, J. Chem. Phys. 122, 084119 (2005). 38 C.-K. Skylaris and P. D. Haynes, J. Chem. Phys. 127,
    • 164712 (2007). 39 M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and
    • B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). 40 S. Grimme, J. Chem. Phys. 124, 034108 (2006). 41 P. D. Haynes, C.-K. Skylaris, A. A. Mosto , and M. C.
    • Payne, phys. stat. sol. (b) 243, 2489 (2006). 42 P. D. Haynes, C. K. Skylaris, A. A. Mosto , and M. C.
    • Payne, J. Phys.: Condens. Matter 20, 294207 (2008). 43 P. E. Blochl, Phys. Rev. B 50, 17953 (1994). 44 K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vander-
    • bilt, Comput. Mater. Sci. 81, 446 (2014). 45 J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.:
    • Condens. Matter 22, 022201 (2010). 46 J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Applied
    • Physics Letters 102, 012111 (2013). 47 Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci.
    • Rep. 3 (2013). 48 P. Joensen, R. F. Frindt, and S. R. Morrison, Materials
    • Research Bulletin 21, 457 (1986). 49 K. Hermann, J. Phys.: Condens. Matter 24, 314210
    • (2012). 50 P. Johari and V. B. Shenoy, ACS Nano 6, 5449 (2012). 51 H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T.
    • Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013). 52 M. Ghorbani-Asl, S. Borini, A. Kuc, and T. Heine, Phys.
    • Rev. B 87, 235434 (2013). 53 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
    • I. Dabo, et al., J. Phys.: Condens. Matter 21, 395502
    • (2009), ISSN 0953-8984. 54 A. Castellanos-Gomez, H. S. J. van der Zant, and G. A.
    • Steele, Nano Res. 7, 1 (2014), ISSN 1998-0124, 1998-0000. 55 G. Constantinescu, A. Kuc, and T. Heine, Phys. Rev. Lett.
    • 111, 036104 (2013). 56 S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankra-
    • tov, Phys. Rev. B 81, 165105 (2010). 57 Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou,
    • G. Ye, R. Vajtai, B. Yakobson, et al., Nat Mater 13, 1135
    • (2014). 58 W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski,
    • Dadap, I. P. Herman, et al., Phys. Rev. Lett. 111, 106801
    • (2013). 59 C.-C. Lee, Y.-T. Yukiko, and O. Taisuke, J. Phys. Con-
    • dens. Matter 25 (2013). 60 F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, ACS
    • Nano (2014). 61 M.-H. Chiu, M.-Y. Li, W. Zhang, W.-T. Hsu, W.-H.
    • 8, 9649 (2014). 62 H. Peelaers and C. G. Van de Walle, Phys. Rev. B 86,
    • 241401 (2012). 63 H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, ,
    • and M. Batzill, Nano Letters 15, 1135 (2015).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article