LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Harris, Peter J. F. (2013)
Publisher: Springer
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atomic and Molecular Clusters
Microporous carbons are important in a wide variety of applications, ranging from pollution control to supercapacitors, yet their structure at the molecular\ud level is poorly understood. Over the years, many structural models have been put forward, but none have been entirely satisfactory in explaining the properties of the carbons. The discovery of fullerenes and fullerene-related\ud structures such as carbon nanotubes gave us a new perspective on the structure of solid carbon, and in 1997 it was suggested that microporous carbon may have a structure related to that of the fullerenes. Recently,\ud evidence in support of such a structure has been obtained using aberration-corrected transmission electron microscopy, electron energy loss spectroscopy and other techniques. This article describes the development of ideas about the structure of microporous carbon, and reviews the experimental evidence for a fullerene-related structure. Theoretical models of the structural evolution of microporous carbon are summarised, and the use of fullerene-like models to predict the adsorptive properties of microporous carbons are reviewed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Derbyshire F, Jagtoyen M, Thwaites M (1995) In: Patrick JW, editor Porosity in carbons: Characterization and applications. Edward Arnold, London p. 227
    • Patrick JW, editor (1995) Porosity in carbons: Characterization and applications. Edward Arnold, London
    • Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, Oxford.
    • 12. Ban LL (1972) In: Roberts MW, Thomas JM, editors. Surface and Defect Properties of Solids, vol 1. Chemical Society, London p. 54
    • 13. Ban LL, Crawford D, Marsh H (1975) Journal of Applied Crystallography 8: 415
    • 14. Jenkins GM, Kawamura K (1971) Nature 231: 175
    • 15. Oberlin A (1989) In: Thrower PA, editor. Chemistry and Physics of Carbon, vol 22, Dekker, New York p. 1-143.
    • 21. Harris PJF, Tsang SC, Claridge JB, Green MLH (1994) Journal of the Chemical Society-Faraday Transactions 90: 2799
    • 22. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chemical Physics Letters 309: 165
    • 23. Harris PJF, Burian A, Duber S (2000) Philosophical Magazine Letters 80: 381
    • 24. Harris PJF (2003) In: Radovic LR, editor. Chemistry and Physics of Carbon, vol 28, Dekker, New York p. 1
    • 25. Harris PJF (2004) Philosophical Magazine 84: 3159
    • 26. Harris PJF (2005) Critical Reviews in Solid State and Materials Sciences 30: 235
    • 27. Iijima S, Ichihashi T, Ando Y (1992) Nature 356: 776
    • 28. Erni R (2010) Aberration-corrected imaging in transmission electron microscopy: An introduction. Imperial College Press, London.
    • 29. Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Nature 430: 870
    • 30. Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Nano Letters 8: 3582
    • 31. Harris PJF, Liu Z, Suenaga K (2008) Journal of Physics-Condensed Matter 20: 362201.
    • 32. Zhang Z, Brydson R, Aslam Z, Reddy S, Brown A, Westwood A, Rand B (2011) Carbon 49: 5049
    • 33. El-Barbary AA, Trasobares S, Ewels CP, Stephan O, Okotrub AV, Bulusheva LG, Fall CJ, Heggie MI (2006) Journal of Physics: Conference Series 26: 149
    • 34. Burian A, Dore JC (2000) Acta Physica Polonica A 98: 457
    • 35. Burian A, Daniel P, Duber S, Dore JC (2001) Philosophical Magazine B 81: 525
    • 36. Hawelek L, Koloczek J, Brodka A, Dore JC, Honkimaki V, Burian A (2007) Philosophical Magazine 87: 4973
    • 37. Hawelek L, Brodka A, Dore JC, Honkimaki V, Burian A (2008) Diamond and Related Materials 17: 1633
    • 38. Acharya M, Strano MS, Mathews JP, Billinge JL, Petkov V, Subramoney S, Foley HC (1999) Philosophical Magazine B 79: 1499
    • 42. Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J, Kowalczyk P (2007) Journal of Physics-Condensed Matter 19: 406208
    • 43. Terzyk AP, Furmaniak S, Harris PJF, Gauden PA, Włoch J, Kowalczyk P, Rychlicki G (2007) Physical Chemistry Chemical Physics 9: 5919
    • 44. Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J (2008) Journal of Physics-Condensed Matter 20: 385212
    • 45. Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Harris PJF (2009). Journal of Physics-Condensed Matter 21: 315005
    • 46. Furmaniak S, Terzyk AP, Gauden PA, Harris PJF, Kowalczyk P (2010) Journal of Physics-Condensed Matter 22: 085003
    • 47. Terzyk AP, Gauden PA, Furmaniak S, Wesołowski RP, Harris PJF (2010) Physical Chemistry Chemical Physics 12: 812
    • 48. Gauden PA, Terzyk AP, Furmaniak S, Harris PJF, Kowalczyk P (2010) Applied Surface Science 256: 5204
    • 49. Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Harris PJF (2011) Journal of Physics-Condensed Matter 23: 395005
    • 50. Bhattacharya S, Gubbins KE (2006) Langmuir 22: 7726
    • 51. Yan QL, de Pablo JJ (1999) Journal of Chemical Physics 111: 9509
    • 52. Kruk M, Jaroniec M, Gadkaree KP (1999) Langmuir 15: 1442
    • 53. Horvath G, Kawazoe K (1983) Journal of Chemical Engineering of Japan 16: 470
    • 55. Dubinin MM, Astakhov VA (1971) Izvestiya Akademii Nauk SSSR-Seriya Khimicheskaya 1: 5
    • 56. Izotova TI, Dubinin MM (1965) Zhurnal Fizicheskoi Khimii 39: 2796
    • 61. Palmer JC, Moore JD, Brennan JK, Gubbins KE (2011) Journal of Physical Chemistry Letters 2: 165
    • 62. Kashihara S, Otani S, Orikasa H, Hoshikawa Y, Ozaki J, Kyotani T (2012) Carbon 50: 3310
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article