Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hathorne, E.C.; Gagnon, A.; Felis, T.; Adkins, J.; Asami, R.; Boer, W.; Caillon, N.; Case, D.; Cobb, K.M.; Douville, E.; Menocal, P. de; Eisenhauer, A.; Garbe-Schonberg, D.; Geibert, W.; Goldstein, S.; Hughen, K.; Inoue, M.; Kawahata, H.; Kolling, M.; Le Cornec, Florence; Linsley, B.K.; McGregor, H.V.; Montagna, P.; Nurhati, I.S.; Quinn, T.M.; Raddatz, J.; Rebaubier, H.; Robinson, L.F.; Sadekov, A.; Sherrell, R. ... view all 36 authors View less authors (2013)
Publisher: Wiley
Languages: French
Types: Article
Subjects: sub-01
The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twenty-one laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7 degrees C. However, most of the data fall within a narrower range and the Porites coral reference material JCp-1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5 degrees C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5 degrees C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allison, N., A. A. Finch, and EIMF (2010), 11B, Sr, Mg and B in a modern Porites coral : The relationship between calcification site pH and skeletal chemistry, Geochim. Cosmochim. Acta, 74(6), 1790-1800.
    • Andreasen, D. H., S. Sosdian, S. Perron-Cashman, C. H. Lear, T. deGaridel-Thoron, P. Field, and Y. Rosenthal (2006), Fidelity of radially viewed ICP-OES and magnetic-sector ICP-MS measurement of Mg/Ca and Sr/Ca ratios in marine biogenic carbonates: Are they trustworthy together?, Geochem. Geophys. Geosyst., 7, Q10P18, doi:10.1029/ 2005GC001124.
    • Asami, R., T. Felis, P. Deschamps, K. Hanawa, Y. Iryu, E. Bard, N. Durand, and M. Murayama (2009), Evidence for tropical South Pacific climate change during the Younger Dryas and the B lling-Aller d from geochemical records of fossil Tahiti corals, Earth Planet. Sci. Lett., 288(1-2), 96- 107.
    • Beck, J. W., R. L. Edwards, E. Ito, F. W. Taylor, J. Recy, F. Rougerie, P. Joannot, and C. Henin (1992), Sea-surface temperature from coral skeletal strontium/calcium ratios, Science, 257(5070), 644-647.
    • Camoin, G. F., Y. Iryu, D. B. McInroy, and the Expedition 310 Scientists (2007), Proc. IODP, 310: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.310.2007.
    • Coadic, R., F. Bassinot, D. Dissard, E. Douville, M. Greaves, and E. Michel (2013), A core-top study of dissolution effect on B/Ca in Globigerinoides sacculifer from the tropical Atlantic: Potential bias for paleo-reconstruction of seawater carbonate chemistry, Geochem. Geophys. Geosyst., doi:10.1029/2012GC004296, in press.
    • Corre`ge, T. (2006), Sea surface temperature and salinity reconstruction from coral geochemical tracers, Palaeogeogr. Palaeoclimatol. Palaeoecol., 232(2-4), 408-428.
    • DeLong, K. L., T. M. Quinn, C.-C. Shen, and K. Lin (2010), A snapshot of climate variability at Tahiti at 9.5 ka using a fossil coral from IODP Expedition 310, Geochem. Geophys. Geosyst., 11, Q06005, doi:10.1029/2009GC002758.
    • Ellison, S. L. R., and A. Williams (Eds). Eurachem/CITAC guide : Quantifying Uncertainty in Analytical Measurement, Third edition (2012), ISBN 978-0-948926-30-3. [Available from www.eurachem.org].
    • Fallon, S. J., J. C. White, and M. T. McCulloch (2002), Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea, Geochim. Cosmochim. Acta, 66(1), 45-62.
    • Felis, T., A. Suzuki, H. Kuhnert, M. Dima, G. Lohmann, and H. Kawahata (2009), Subtropical coral reveals abrupt earlytwentieth-century freshening in the western North Pacific Ocean, Geology, 37(6), 527-530.
    • Felis, T., et al. (2012), Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1, Nat. Commun., 3(965), doi:10.1038/ncomms1973.
    • Fernandez, D. P., A. C. Gagnon, and J. F. Adkins (2011), An isotope dilution ICP-MS method for the determination of Mg/Ca and Sr/Ca ratios in calcium carbonate, Geostand. Geoanal. Res., 35(1), 23-37.
    • Gagan, M. K., L. K. Ayliffe, D. Hopley, J. A. Cali, G. E. Mortimer, J. Chappell, M. T. McCulloch, and M. J. Head (1998), Temperature and surface-ocean water balance of the midHolocene tropical western Pacific, Science, 279, 1014-1018.
    • Greaves, M., et al. (2008), Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry, Geochem. Geophys. Geosyst., 9, Q08010, doi:08010.01029/ 02008GC001974.
    • Hathorne, E. C., T. Felis, R. H. James, and A. Thomas (2011), Laser ablation ICP-MS screening of corals for diagenetically affected areas applied to Tahiti corals from the last deglaciation, Geochim. Cosmochim. Acta, 75(6), 1490-1506.
    • Hathorne, E. C., T. Felis, A. Suzuki, H. Kawahata, and G. Cabioch (2013), Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures, Paleoceanography, 28, 143-152, doi:10.1029/2012PA002311.
    • Inoue, M., M. Nohara, T. Okai, A. Suzuki, and H. Kawahata (2004), Concentrations of trace elements in carbonate reference materials coral JCp-1 and giant clam JCt-1 by inductively coupled plasma-mass spectrometry, Geostand. Geoanal. Res., 28(3), 411-416.
    • Inoue, M., R. Suwa, A. Suzuki, K. Sakai, and H. Kawahata (2011), Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps, Geophys. Res. Lett., 38, L12809, doi:10.1029/2011GL047786.
    • ISO 5725-5 (1998), Accuracy (trueness and precision) of measurement methods and results-Part 5: Alternative methods for the determination of the precision of a standard measurement method, Int. Organ. for Stand., Geneva.
    • ISO 13528 (2005), Statistical methods for use in proficiency testing by interlaboratory comparisons, Int. Organ. for Stand., Geneva.
    • Jochum, K. P., and U. Nohl (2008), Reference materials in geochemistry and environmental research and the GeoReM database, Chem. Geol., 253, 50-53.
    • Kane, J. S. (2002), Fitness-for-purpose of reference material reference values in relation to traceability of measurement, as illustrated by USGS BCR-1, NIST SRM 610 and IAEA NBS28, Geostand. Newsl., 26(1), 7-29.
    • Kane, J. S. (2004), Report of the International Association of Geoanalysts on the certification of Penrhyn slate, OU-6, Geostand. Geoanal. Res., 28(1), 53-80.
    • Kane, J. S., and P. J. Potts (2002), Traceability in geochemical analysis, Geostand. Newsl., 26(2), 171-180.
    • Kane, J. S., P. J. Potts, M. Wiedenbeck, J. Carignan, and S. Wilson (2003), International Association of Geoanalysts' protocol for the certification of geological and environmental reference materials, Geostand. Newsl., 27(3), 227-244.
    • Le Cornec, F., and T. Corre`ge (1997), Determination of uranium to calcium and strontium to calcium ratios in corals by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 12(9), 969-973.
    • Marchitto, T. M. (2006), Precise multielemental ratios in small foraminiferal samples determined by sector field ICP-MS, Geochem. Geophys. Geosyst., 7, Q05P13, doi:10.1029/ 2005GC001018.
    • McCulloch, M., S. Fallon, T. Wyndham, E. Hendy, J. Lough, and D. Barnes (2003), Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement, Nature, 421(6924), 727-730.
    • McCulloch, M. T., M. K. Gagan, G. E. Mortimer, A. R. Chivas, and P. J. Isdale (1994), A high-resolution Sr/Ca and 18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Nino, Geochim. Cosmochim. Acta, 58(12), 2747-2754.
    • Meibom, A., J.-P. Cuif, F. Houlbreque, S. Mostefaoui, Y. Dauphin, K. L. Meibom, and R. Dunbar (2008), Compositional variations at ultra-structure length scales in coral skeleton, Geochim. Cosmochim. Acta, 72, 1555-1569.
    • Min, G. R., L. R. Edwards, F. W. Taylor, J. Recy, C. Gallup, and J. W. Beck (1995), Annual cycles of U/Ca in coral skeletons and U/Ca thermometry, Geochim. Cosmochim. Acta, 59, 2025-2042.
    • Mitsuguchi, T., E. Matsumoto, O. Abe, T. Uchida, and P. J. Isdale (1996), Mg/Ca Thermometry in coral skeletons, Science, 274(5289), 961-963.
    • Nurhati, I. S., K. M. Cobb, and E. Di Lorenzo (2011), Decadal-scale SST and salinity variations in the central tropical Pacific : Signatures of natural and anthropogenic climate change, J. Clim., 24(13), 3294-3308.
    • Okai, T., A. Suzuki, H. Kawahata, S. Terashima, and N. Imai (2002), Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp-1, Geostand. Newsl., 26, 95-99.
    • Okai, T., A. Suzuki, S. Terashima, M. Inoue, M. Nohara, H. Kawahata, and N. Imai (2004), Collaborative analysis of GSJ/AIST geochemical reference materials JCp-1 (Coral) and JCt-1 (Giant Clam), Chikyu Kagaku, 38, 281-286.
    • Ourbak, T., T. Corre`ge, B. Malaize┬», F. Le Cornec, K. Charlier, and J. P. Peypouquet (2006), A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals, Geochem. Geophys. Geosyst., 7, Q03013, doi :10.1029/2005GC001064.
    • Prouty, N., K. Hughen, and J. Carilli (2008), Geochemical signature of land-based activities in Caribbean coral surface samples, Coral Reefs, 27(4), 727-742.
    • Prouty, N. G., M. E. Field, J. D. Stock, S. D. Jupiter, and M. McCulloch (2010), Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Molokai, Hawaii, over the last several decades, Mar. Pollut. Bull., 60(10), 1822- 1835.
    • Quinn, T. M., and D. E. Sampson (2002), A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry, Paleoceanography, 17(4), 1062, doi :1010.1029/2000PA000528.
    • Raitzsch, M., E. C. Hathorne, H. Kuhnert, J. Groeneveld, and T. Bickert (2011a), Modern and late Pleistocene B/Ca ratios of the benthic foraminifer Planulina wuellerstorfi determined with laser ablation ICP-MS, Geology, 39(11), 1039-1042.
    • Raitzsch, M., H. Kuhnert, E. C. Hathorne, J. Groeneveld, and T. Bickert (2011b), U/Ca in benthic foraminifers : A proxy for the deep-sea carbonate saturation, Geochem. Geophys. Geosyst., 12, Q06019, doi :10.1029/2010GC003344.
    • Ramos, F. C., J. A. Wolff, and D. L. Tollstrup (2004), Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS, Chem. Geol., 211, 135-158.
    • Rosenthal, Y., M. P. Field, and R. M. Sherrell (1999), Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry, Anal. Chem., 71, 3248-3253.
    • Russell, W. A., D. A. Papanastassiou, and T. A. Tombrello (1978), Ca isotope fractionation on Earth and other solarsystem materials, Geochim. Cosmochim. Acta, 42, 1075-1090.
    • Schrag, D. P. (1999), Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates, Paleoceanography, 14(2), 97-102.
    • Shen, C.-C., H.-Y. Chiu, H.-W. Chiang, M.-F. Chu, K.-Y. Wei, S. Steinke, M.-T. Chen, Y.-S. Lin, and L. Lo (2007), High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry, Chem. Geol., 236, 339-349.
    • Sinclair, D. J., and M. T. McCulloch (2004), Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood : Evidence for limited Ba supply to rivers ?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 214, 155-174.
    • Sinclair, D. J., L. P. J. Kinsley, and M. T. McCulloch (1998), High resolution analysis of trace elements in corals by laser ablation ICP-MS, Geochim. Cosmochim. Acta, 62(11), 1889-1901.
    • Srnkova, J., and J. Zb─▒ral (2009), Comparison of different approaches to the statistical evaluation of proficiency tests, Accreditation Qual. Assurance, 14(8), 467-471.
    • Stott, L., A. Timmermann, and R. Thunell (2007), Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming, Science, 318, 435-438.
    • Sturgeon, R. E., S. N. Willie, L. Yang, R. Greenberg, R. O. Spatz, Z. Chen, C. Scriver, V. Clancy, J. W. Lam, and S. Thorrold (2005), Certification of a fish otolith reference material in support of quality assurance for trace element analysis, J. Anal. At. Spectrom., 20(10), 1067-1071.
    • Watters, R. L., Jr., K. R. Eberhardt, E. S. Beary, and J. D. Fassett (1997), Protocol for isotope dilution using inductively coupled plasma-mass spectrometry (ICP-MS) for the determination of inorganic elements, Metrologia, 34(1), 87-96.
    • Wieser, M. E., D. Buhl, C. Bouman, and J. Schwieters (2004), High precision calcium isotope ratio measurements using a magnetic sector multiple collector inductively coupled plasma mass spectrometer, J. Anal. At. Spectrom., 19(7), 844-851.
    • Wilrich, P.-T. (2007), Robust estimates of the theoretical standard deviation to be used in interlaboratory precision experiments, Accreditation Qual. Assurance, 12(5), 231- 240.
    • Yu, J., J. Day, M. Greaves, and H. Elderfield (2005), Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS, Geochem. Geophys. Geosyst., 6, Q08P01, doi :10.1029/2005GC000964.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects


Cite this article