Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Singer, Jeremy; Marion, Sebastien; Brown, Gavin D.; Jones, Richard E.; Lujan, Mikel; Ryder, Chris; Watson, Ian (2008)
Languages: English
Types: Unknown
Subjects: QA76
Accurate object lifetime prediction can be exploited by allocators to improve the performance of generational garbage collection by placing immortal or long-lived objects directly into immortal or old generations. Object-oriented software metrics are emerging as viable indicators for object lifetime prediction. This paper studies the correlation of various metrics with object lifetimes. However, to date most studies have been empirical and have not provided any information theoretic underpinning. We use the information theoretic calculation of normalized mutual information to measure correlation. We assess which metrics are most useful for prediction and construct some simple yet accurate object lifetime predictors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Ungar, D.: Generation scavenging: A non-disruptive high performance storage reclamation algorithm. In: Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments. (1984) 157-167
    • 2. Lieberman, H., Hewitt, C.: A real-time garbage collector based on the lifetimes of objects. CACM 26(6) (1983) 419-429
    • 3. Cheng, P., Harper, R., Lee, P.: Generational stack collection and profile-driven pretenuring. In: PLDI. (1998) 162-173
    • 4. Blackburn, S.M., Singhai, S., Hertz, M., McKinley, K.S., Moss, J.E.B.: Pretenuring for Java. In: OOPSLA. (2001) 342-352
    • 5. Blackburn, S.M., Hertz, M., McKinley, K.S., Moss, J.E.B., Yang, T.: Profile-based pretenuring. ACM Transactions on Programming Languages and Systems 29(1) (2007) 1-57
    • 6. Inoue, H., Stefanovic, D., Forrest, S.: On the prediction of Java object lifetimes. IEEE Transactions on Computers 55(7) (2006) 880-892
    • 7. Barrett, D.A., Zorn, B.G.: Using lifetime predictors to improve memory allocation performance. In: Proceedings of the ACM SIGPLAN 1993 conference on Programming Language Design and Implementation. (1993) 187-196
    • 8. Shuf, Y., Gupta, M., Bordawekar, R., Singh, J.P.: Exploiting prolific types for memory management and optimizations. In: POPL. (2002) 295-306
    • 9. Huang, W., Srisa-an, W., Chang, J.M.: Dynamic pretenuring schemes for generational garbage collection. In: IEEE International Symposium on Performance Analysis of Systems and Software. (2004) 133-140
    • 10. Singer, J., Brown, G., Luj´an, M., Watson, I.: Towards intelligent analysis techniques for object pretenuring. In: Proceedings of the International Conference on Principles and Practice of Programming in Java. (Sep 2007) 203-208
    • 11. Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Memory Management. Wiley (1996)
    • 12. Jones, R.: Dynamic memory management: Challenges for today and tomorrow. In: Proceedings of the International Lisp Conference. (2007) 115-124
    • 13. Baker, H.G.: Infant mortality and generational garbage collection. ACM SIGPLAN Notices 28(4) (1993) 55-57
    • 14. Microsystems, S.: The Java HotSpot Virtual Machine (2001) Technical White Paper.
    • 15. Alpern, B., et al.: The Jalapen˜o virtual machine. IBM Systems Journal 39(1) (Feb 2000) 211-238
    • 16. Persson, M.: Java technology, IBM style: Garbage collection policies (May 2006) Garbage collection in the IBM SDK 5.0.
    • 17. Ungar, D.M., Jackson, F.: An adaptive tenuring policy for generation scavengers. ACM Transactions on Programming Languages and Systems 14(1) (1992) 1-27
    • 18. Marion, S., Jones, R., Ryder, C.: Decrypting the Java gene pool: Predicting objects' lifetimes with micro-patterns. In: Proceedings of the International Symposium on Memory Management. (Oct 2007) (to appear)
    • 19. Gil, Y., Maman, I.: Micro patterns in Java code. In: Object-Oriented Programming, Systems, Language and Applications (OOPSLA'05). (2005) 97-116
    • 20. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Transactions on Software Engineering 20(6) (1994) 476-493
    • 21. Spinellis, D.: ckjm-Chidamber and Kemerer Java metrics (2005) http://www.spinellis.gr/sw/ckjm/.
    • 22. Chidamber, S.R., Darcy, D.P., Kemerer, C.F.: Managerial use of metrics for objectoriented software: An exploratory analysis. IEEE Transactions on Software Engineering 24(8) (1998) 629-639
    • 23. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Eliot, J., Moss, B., Phansalkar, A., Stefanovi´c, D., VanDrunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking development and analysis. In: Proceedings of the 21st ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications. (2006) 169-190
    • 24. Alpern, B., et al.: The Jikes research virtual machine project: Building an open source research community. IBM Systems Journal 44(2) (Feb 2005) 1-19
    • 25. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. 2nd edn. Morgan Kaufmann (2005)
    • 26. Fleuret, F.: Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research 5 (2004) 1531-1555
    • 27. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article