LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shazia Hosein; Alhelí Rodríguez-Cortés; Damer P Blake; Karin Allenspach; Jordi Alberola; Laia Solano-Gallego
Publisher: Public Library of Science (PLoS)
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Research Article, Toll-like receptors, Spleen, Skin infections, Medicine, Leishmania infantum, Q, R, Lymph nodes, Science, Dogs, Parasitic diseases, Cytokines
Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27: 305-318. PMID: 15225981
    • 2. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5: 873-882. PMID: 17938629
    • 3. Solano-Gallego L, Koutinas A, Miro G, Cardoso L, Pennisi MG, Ferrer L, et al. (2009) Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet Parasitol 165: 1-18. doi: 10.1016/j.vetpar.2009.05.022 PMID: 19559536
    • 4. Holzmuller P, Cavaleyra M, Moreaux J, Kovacic R, Vincendeau P, Papierok G, et al. (2005) Lymphocytes of dogs immunised with purified excreted-secreted antigens of Leishmania infantum co-incubated with Leishmania infected macrophages produce IFN gamma resulting in nitric oxide-mediated amastigote apoptosis. Vet Immunol Immunopathol 106: 247-257. PMID: 15963823
    • 5. Engwerda CR, Kaye PM (2000) Organ-specific immune responses associated with infectious disease. Immunol Today 21: 73-78. PMID: 10652464
    • 6. Moreno J, Alvar J (2002) Canine leishmaniasis: epidemiological risk and the experimental model. Trends Parasitol 18: 399-405. PMID: 12377257
    • 7. Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3: 1041-1047. PMID: 12407413
    • 8. Tuon FF, Amato VS, Bacha HA, Almusawi T, Duarte MI, Amato Neto V (2008) Toll-like receptors and leishmaniasis. Infect Immun 76: 866-872. PMID: 18070909
    • 9. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388: 621-625. doi: 10.1016/j.bbrc.2009.08.062 PMID: 19686699
    • 10. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27: 485- 517. doi: 10.1146/annurev.immunol.021908.132710 PMID: 19132915
    • 11. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21: 241-254. PMID: 15308104
    • 12. Nascimento MS, Carregaro V, Lima-Junior DS, Costa DL, Ryffel B, Duthie MS, et al. (2015) Interleukin 17A acts synergistically with interferon gamma to promote protection against Leishmania infantum infection. J Infect Dis 211: 1015-1026. doi: 10.1093/infdis/jiu531 PMID: 25274569
    • 13. Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol 182: 3039-3046. doi: 10.4049/ jimmunol.0713598 PMID: 19234200
    • 14. Gonzalez-Lombana C, Gimblet C, Bacellar O, Oliveira WW, Passos S, Carvalho LP, et al. (2013) IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection. PLoS Pathog 9: e1003243. doi: 10.1371/journal.ppat.1003243 PMID: 23555256
    • 15. Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol Rev 213: 159-179. PMID: 16972903
    • 16. Rodrigues OR, Marques C, Soares-Clemente M, Ferronha MH, Santos-Gomes GM (2009) Identification of regulatory T cells during experimental Leishmania infantum infection. Immunobiology 214: 101- 111. doi: 10.1016/j.imbio.2008.07.001 PMID: 19167988
    • 17. Katara GK, Ansari NA, Verma S, Ramesh V, Salotra P (2011) Foxp3 and IL-10 expression correlates with parasite burden in lesional tissues of post kala azar dermal leishmaniasis (PKDL) patients. PLoS Negl Trop Dis 5: e1171. doi: 10.1371/journal.pntd.0001171 PMID: 21655313
    • 18. Rai AK, Thakur CP, Singh A, Seth T, Srivastava SK, Singh P, et al. (2012) Regulatory T cells suppress T cell activation at the pathologic site of human visceral leishmaniasis. PLoS One 7: e31551. doi: 10. 1371/journal.pone.0031551 PMID: 22347492
    • 19. Figueiredo MM, Deoti B, Amorim IF, Pinto AJ, Moraes A, Carvalho CS, et al. (2014) Expression of Regulatory T Cells in Jejunum, Colon, and Cervical and Mesenteric Lymph Nodes of Dogs Naturally Infected with Leishmania infantum. Infect Immun 82: 3704-3712. doi: 10.1128/IAI.01862-14 PMID: 24935975
    • 20. Silva KL, de Andrade MM, Melo LM, Perosso J, Vasconcelos RO, Munari DP, et al. (2014) CD4 +FOXP3+ cells produce IL-10 in the spleens of dogs with visceral leishmaniasis. Vet Parasitol 202: 313-318. doi: 10.1016/j.vetpar.2014.03.010 PMID: 24703254
    • 21. Garden OA, Pinheiro D, Cunningham F (2011) All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 11: 576-588. doi: 10.1016/j. intimp.2010.11.003 PMID: 21093606
    • 22. Menezes-Souza D, Correa-Oliveira R, Guerra-Sa R, Giunchetti RC, Teixeira-Carvalho A, Martins-Filho OA, et al. (2011) Cytokine and transcription factor profiles in the skin of dogs naturally infected by Leishmania (Leishmania) chagasi presenting distinct cutaneous parasite density and clinical status. Vet Parasitol 177: 39-49. doi: 10.1016/j.vetpar.2010.11.025 PMID: 21163578
    • 23. Alves CF, de Amorim IFG, Moura EP, Ribeiro RR, Alves CF, Michalick MS, et al. (2009) Expression of IFN-gamma, TNF-alpha, IL-10 and TGF-beta in lymph nodes associates with parasite load and clinical form of disease in dogs naturally infected with Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol 128: 349-358. doi: 10.1016/j.vetimm.2008.11.020 PMID: 19124159
    • 24. Maia C, Campino L (2012) Cytokine and Phenotypic Cell Profiles of Leishmania infantum Infection in the Dog. J Trop Med 2012: 541571. doi: 10.1155/2012/541571 PMID: 21845197
    • 25. Riera C, Valladares JE, Gallego M, Aisa MJ, Castillejo S, Fisa R, et al. (1999) Serological and parasitological follow-up in dogs experimentally infected with Leishmania infantum and treated with meglumine antimoniate. Vet Parasitol 84: 33-47. PMID: 10435789
    • 26. Rodriguez-Cortes A, Fernandez-Bellon H, Ramis A, Ferrer L, Alberola J, Solano-Gallego L (2007) Leishmania-specific isotype levels and their relationship with specific cell-mediated immunity parameters in canine leishmaniasis. Vet Immunol Immunopathol 116: 190-198. PMID: 17321600
    • 27. Rodriguez-Cortes A, Ojeda A, Francino O, Lopez-Fuertes L, Timon M, Alberola J (2010) Leishmania infection: laboratory diagnosing in the absence of a "gold standard". Am J Trop Med Hyg 82: 251-256. doi: 10.4269/ajtmh.2010.09-0366 PMID: 20134001
    • 28. Peng ZK, Simons FE, Becker AB (1991) Differential binding properties of protein A and protein G for dog immunoglobulins. J Immunol Methods 145: 255-258. PMID: 1765660
    • 29. Rodriguez-Cortes A, Ojeda A, Lopez-Fuertes L, Timon M, Altet L, Solano-Gallego L, et al. (2007) A long term experimental study of canine visceral leishmaniasis. Int J Parasitol 37: 683-693. PMID: 17239885
    • 30. Francino O, Altet L, Sanchez-Robert E, Rodriguez A, Solano-Gallego L, Alberola J, et al. (2006) Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet Parasitol 137: 214-221. PMID: 16473467
    • 31. Peters IR, Peeters D, Helps CR, Day MJ (2007) Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Vet Immunol Immunopathol 117: 55-66. PMID: 17346803
    • 32. Sano J, Oguma K, Kano R, Yazawa M, Tsujimoto H, Hasegawa A (2005) High expression of Bcl-xL in delayed apoptosis of canine neutrophils induced by lipopolysaccharide. Res Vet Sci 78: 183-187. PMID: 15563927
    • 33. Wood SH, Clements DN, McEwan NA, Nuttall T, Carter SD (2008) Reference genes for canine skin when using quantitative real-time PCR. Vet Immunol Immunopathol 126: 392-395. doi: 10.1016/j. vetimm.2008.08.006 PMID: 18824265
    • 34. House AK, Gregory SP, Catchpole B (2008) Pattern-recognition receptor mRNA expression and function in canine monocyte/macrophages and relevance to canine anal furunuclosis. Vet Immunol Immunopathol 124: 230-240. doi: 10.1016/j.vetimm.2008.03.012 PMID: 18471895
    • 35. Schmitz S, Garden OA, Werling D, Allenspach K (2012) Gene expression of selected signature cytokines of T cell subsets in duodenal tissues of dogs with and without inflammatory bowel disease. Vet Immunol Immunopathol 146: 87-91. doi: 10.1016/j.vetimm.2012.01.013 PMID: 22333286
    • 36. Kropf P, Freudenberg MA, Modolell M, Price HP, Herath S, Antoniazi S, et al. (2004) Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect Immun 72: 1920-1928. PMID: 15039311
    • 37. Liese J, Schleicher U, Bogdan C (2007) TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis. Eur J Immunol 37: 3424-3434. PMID: 18034422
    • 38. Raman VS, Bhatia A, Picone A, Whittle J, Bailor HR, O'Donnell J, et al. (2010) Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. J Immunol 185: 1701-1710. doi: 10.4049/ jimmunol.1000238 PMID: 20601594
    • 39. Tuon FF, Fernandes ER, Pagliari C, Duarte MI, Amato VS (2010) The expression of TLR9 in human cutaneous leishmaniasis is associated with granuloma. Parasite Immunol 32: 769-772. PMID: 21086718
    • 40. Gallego C, Golenbock D, Gomez MA, Saravia N (2011) Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infect Immun.
    • 41. Figueiredo MM, Amorim IF, Pinto AJ, Barbosa VS, de Jesus Pinheiro L, Deoti B, et al. (2013) Expression of Toll-like Receptors 2 and 9 in cells of dog jejunum and colon naturally infected with Leishmania infantum. BMC Immunol 14: 22. doi: 10.1186/1471-2172-14-22 PMID: 23668673
    • 42. Melo GD, Silva JE, Grano FG, Homem CG, Machado GF (2014) Compartmentalized gene expression of Toll-like receptors 2, 4, and 9 in the brain and peripheral lymphoid organs during canine visceral leishmaniasis. Parasite Immunol.
    • 43. de Veer MJ, Curtis JM, Baldwin TM, DiDonato JA, Sexton A, McConville MJ, et al. (2003) MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol 33: 2822-2831. PMID: 14515266
    • 44. Flandin JF, Chano F, Descoteaux A (2006) RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gamma-primed macrophages. Eur J Immunol 36: 411-420. PMID: 16369915
    • 45. Melo LM, Perosso J, Almeida BF, Silva KL, Somenzari MA, de Lima VM (2014) Effects of P-MAPA immunomodulator on Toll-like receptor 2, ROS, nitric oxide, MAPKp38 and IKK in PBMC and macrophages from dogs with visceral leishmaniasis. Int Immunopharmacol 18: 373-378. doi: 10.1016/j. intimp.2013.12.012 PMID: 24374021
    • 46. Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165: 969-977. PMID: 10878373
    • 47. Santos-Gomes GM, Rosa R, Leandro C, Cortes S, Romao P, Silveira H (2002) Cytokine expression during the outcome of canine experimental infection by Leishmania infantum. Vet Immunol Immunopathol 88: 21-30. PMID: 12088641
    • 48. Ehrchen JM, Roth J, Roebrock K, Varga G, Domschke W, Newberry R, et al. (2008) The absence of cutaneous lymph nodes results in a Th2 response and increased susceptibility to Leishmania major infection in mice. Infect Immun 76: 4241-4250. doi: 10.1128/IAI.01714-07 PMID: 18625738
    • 49. Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, et al. (2011) Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331: 775-778. doi: 10.1126/ science.1199326 PMID: 21311023
    • 50. Carvalho LP, Petritus PM, Trochtenberg AL, Zaph C, Hill DA, Artis D, et al. (2012) Lymph node hypertrophy following Leishmania major infection is dependent on TLR9. J Immunol 188: 1394-1401. doi: 10.4049/jimmunol.1101018 PMID: 22205030
    • 51. Tolouei S, Hejazi SH, Ghaedi K, Khamesipour A, Hasheminia SJ (2013) TLR2 and TLR4 in cutaneous leishmaniasis caused by Leishmania major. Scand J Immunol 78: 478-484. doi: 10.1111/sji.12105 PMID: 23980810
    • 52. Cezario GA, Oliveira LR, Peresi E, Nicolete VC, Polettini J, Lima CR, et al. (2011) Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection. Mem Inst Oswaldo Cruz 106: 573-583. PMID: 21894379
    • 53. Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L (2008) Canine leishmaniosis-new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 24: 324-330. doi: 10. 1016/j.pt.2008.04.001 PMID: 18514028
    • 54. Kumar R, Singh OP, Gautam S, Nylen S, Sundar S (2014) Enhanced expression of Toll-like receptors 2 and 4, but not 9, in spleen tissue from patients with visceral leishmaniasis. Parasite Immunol 36: 721-725. doi: 10.1111/pim.12145 PMID: 25244363
    • 55. Vargas-Inchaustegui DA, Tai W, Xin L, Hogg AE, Corry DB, Soong L (2009) Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun 77: 2948-2956. doi: 10.1128/IAI.00154-09 PMID: 19364834
    • 56. Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG, McMahon-Pratt D (2010) Murine model of chronic L. (Viannia) panamensis infection: role of IL-13 in disease. Eur J Immunol 40: 2816-2829. doi: 10.1002/eji.201040384 PMID: 20827674
    • 57. Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WL, Clarencio J, et al. (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40: 2830-2836. doi: 10.1002/eji.200940115 PMID: 20812234
    • 58. Ghosh K, Sharma G, Saha A, Kar S, Das PK, Ukil A (2013) Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines. J Infect Dis 207: 1016-1025. doi: 10.1093/infdis/jis771 PMID: 23255562
    • 59. Pitta MG, Romano A, Cabantous S, Henri S, Hammad A, Kouriba B, et al. (2009) IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 119: 2379-2387. doi: 10.1172/JCI38813 PMID: 19620772
    • 60. Nylen S, Gautam S (2010) Immunological perspectives of leishmaniasis. J Glob Infect Dis 2: 135-146. doi: 10.4103/0974-777X.62876 PMID: 20606969
    • 61. Bourreau E, Ronet C, Darcissac E, Lise MC, Sainte Marie D, Clity E, et al. (2009) Intralesional regulatory T-cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis. Infect Immun 77: 1465-1474. doi: 10.1128/IAI.01398-08 PMID: 19168733
    • 62. Tiwananthagorn S, Iwabuchi K, Ato M, Sakurai T, Kato H, Katakura K (2012) Involvement of CD4(+) Foxp3(+) regulatory T cells in persistence of Leishmania donovani in the liver of alymphoplastic aly/aly mice. PLoS Negl Trop Dis 6: e1798. doi: 10.1371/journal.pntd.0001798 PMID: 22928057
    • 63. Elassad AM, Younis SA, Siddig M, Grayson J, Petersen E, Ghalib HW (1994) The significance of blood levels of IgM, IgA, IgG and IgG subclasses in Sudanese visceral leishmaniasis patients. Clin Exp Immunol 95: 294-299. PMID: 8306504
    • 64. Almeida MA, Jesus EE, Sousa-Atta ML, Alves LC, Berne ME, Atta AM (2005) Clinical and serological aspects of visceral leishmaniasis in northeast Brazilian dogs naturally infected with Leishmania chagasi. Vet Parasitol 127: 227-232. PMID: 15710523
    • 65. Reis AB, Teixeira-Carvalho A, Vale AM, Marques MJ, Giunchetti RC, Mayrink W, et al. (2006) Isotype patterns of immunoglobulins: hallmarks for clinical status and tissue parasite density in Brazilian dogs naturally infected by Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol 112: 102-116. PMID: 16621021
    • 66. Solano-Gallego L, Morell P, Arboix M, Alberola J, Ferrer L (2001) Prevalence of Leishmania infantum infection in dogs living in an area of canine leishmaniasis endemicity using PCR on several tissues and serology. J Clin Microbiol 39: 560-563. PMID: 11158106
    • 67. Rodriguez A, Solano-Gallego L, Ojeda A, Quintana J, Riera C, Gallego M, et al. (2006) Dynamics of Leishmania-specific immunoglobulin isotypes in dogs with clinical leishmaniasis before and after treatment. J Vet Intern Med 20: 495-498. PMID: 16734080
    • 68. da Matta VL, Hoshino-Shimizu S, Dietze R, Corbett CE (2000) Detection of specific antibody isotypes and subtypes before and after treatment of American visceral leishmaniasis. J Clin Lab Anal 14: 5-12. PMID: 10645978
    • 69. O'Neil CE, Labrada M, Saravia NG (1993) Leishmania (Viannia) panamensis-specific IgE and IgA antibodies in relation to expression of human tegumentary leishmaniasis. Am J Trop Med Hyg 49: 181- 188. PMID: 8357080
    • 70. Strauss-Ayali D, Jaffe CL, Burshtain O, Gonen L, Baneth G (2004) Polymerase chain reaction using noninvasively obtained samples, for the detection of Leishmania infantum DNA in dogs. J Infect Dis 189: 1729-1733. PMID: 15116312
    • 71. Rica-Capela MJ, Cortes S, Leandro C, Peleteiro MC, Santos-Gomes G, Campino L (2003) Immunological and histopathological studies in a rodent model infected with Leishmania infantum promastigotes or amastigotes. Parasitol Res 89: 163-169. PMID: 12541057
    • 72. Travi BL, Tabares CJ, Cadena H, Ferro C, Osorio Y (2001) Canine visceral leishmaniasis in Colombia: relationship between clinical and parasitologic status and infectivity for sand flies. Am J Trop Med Hyg 64: 119-124. PMID: 11442205
    • 73. Alvar J, Canavate C, Molina R, Moreno J, Nieto J (2004) Canine leishmaniasis. Adv Parasitol 57: 1- 88. PMID: 15504537
    • 74. Maia C, Nunes M, Cristovao J, Campino L (2010) Experimental canine leishmaniasis: clinical, parasitological and serological follow-up. Acta Trop 116: 193-199. doi: 10.1016/j.actatropica.2010.08.001 PMID: 20696122
    • 75. Courtenay O, Carson C, Calvo-Bado L, Garcez LM, Quinnell RJ (2014) Heterogeneities in Leishmania infantum infection: using skin parasite burdens to identify highly infectious dogs. PLoS Negl Trop Dis 8: e2583. doi: 10.1371/journal.pntd.0002583 PMID: 24416460
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article