LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cartwright, L.; Neal, T.J.; Rutland, N.J.; Iraqi, A. (2016)
Publisher: Wiley
Languages: English
Types: Article
Subjects:
Three novel alternating copolymers of thieno[3,4-c]pyrrole-4,6-dione (TPD) and triisopropylsilylacetylene-functionalized anthracene were prepared via Suzuki polymerization. Various solubilizing substituents were attached to the TPD moiety in order to ascertain the impact they have upon the optical, electrochemical, and thermal properties of the resulting polymers. All copolymers showed good solubility and thermal stability with decomposition temperatures in excess of 300°C. Optical properties revealed that PTATPD(O), PTATPD(DMO), and PTATPD(BP) displayed optical energy gaps in excess of 2.0eV. It is speculated that steric repulsion between solubilizing groups on repeat units along polymer chains reduces their planarity and decreases their electronic conjugation. The amorphous nature of the polymers was confirmed with differential scanning calorimetry and powder X-ray diffraction. The highest occupied molecular orbital levels of the three polymers are unaffected by the different solubilizing chains. However, they exert some influence over the lowest unoccupied molecular orbital (LUMO) levels with PTATPD(BP) and PTATPD(O) displaying the lowest LUMO levels (-3.4eV). In contrast, PTATPD(DMO) displayed the highest LUMO level (-3.3eV).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Y. Xu, F. Zhang, X. Feng, Small 2011, 7, 1338.
    • [2] A. K. A. de Almeida, J. M. M. Dias, A. Julia, C. Silva, M. Navarro, S. A. Junior, J. Tonholo, A. S. Ribeiro, Synth. Met. 2013, 171, 45.
    • [3] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, App. Phys. Lett. 2010, 156, 1.
    • [4] B. S. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20, 4189.
    • [5] B. C. Krummacher, V. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, M. Zachau, B. C. Krummacher, V. Choong, M. K. Mathai, Appl. Phys. Lett. 2006, 88, 113506.
    • [6] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature 2009, 459, 234.
    • [7] S. G. Robinson, M. C. Lonergan, R. H. Mitchell, J. Org. Chem. 2009, 74, 6606.
    • [8] A. Yassar, F. Garnier, H. Jaafari, M. Frigoli, C. Moustrou, A. Samat, R. Guglielmetti, Appl. Phys. Lett. 2002, 80, 4297.
    • [9] T. Umeyama, H. Imahori, J. Mater. Chem. A. 2014, 2, 11545.
    • [10] H. Sirringhaus, Adv. Mater. 2014, 26, 1319.
    • [11] Q. Ling, D. Liaw, C. Zhu, D. S. Chan, E. Kang, K. Neoh, Prog. Polym. Sci. 2008, 33, 917.
    • [12] Y. Cheng, S. Yang, C. Hsu, Chem. Rev. 2009, 109, 5868.
    • [13] P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268.
    • [14] R. S. Ashraf, I. Meager, M. Nikolka, M. Kirkus, M. Planells, B. C. Schroeder, S. Holliday, M. Hurhangee, C. B. Nielsen, H. Sirringhaus, I. Mcculloch, J. Am. Chem. Soc. 2015, 137, 1314.
    • [15] M. Ak, M. Sulak, G. Kurtay, M. Güllü, L. Toppare, Solid State Sci. 2010, 12, 1199.
    • [16] D. T. Mcquade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537.
    • [17] B. Adhikari, S. Majumdar, Prog. Polym. Sci. 2004, 29, 699.
    • [18] X. Guo, M. Baumgarten, K. Müllen, Prog. Polym. Sci. 2013, 38, 1832.
    • [19] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062.
    • [20] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nat Phot. 2009, 3, 297.
    • [21] H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607.
    • [22] Y. Zou, A. Najari, P. Berrouard, S. Beaupre, B. R. Aїch, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2010, 132, 5330.
    • [23] A. Pron, P. Berrouard, M. Leclerc, Macromol. Chem. Phys. 2013, 214, 7.
    • [24] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135.
    • [25] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062.
    • [26] T. Chu, J. Lu, S. Beaupr, Y. Zhang, J. Pouliot, S. Wakin, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, J. Am. Chem. Soc. 2011, 133, 4250.
    • [27] C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. Tsang, T. Lai, J. R. Reynolds, F. So, Nat. Photonics. 2011, 6, 115.
    • [28] Q. Wu, M. Wang, X. Qiao, Y. Xiong, Y. Huang, X. Gao, H. Li, Macromolecules 2013, 46, 3887.
    • [29] J. Y. Back, T. K. An, Y. R. Cheon, H. Cha, J. Jang, Y. Kim, Y. Baek, D. S. Chung, S. Kwon, C. E. Park, Y. Kim, ACS Appl. Mater. Interfaces 2015, 7, 351.
    • [30] Y. Li, T. Kim, Q. Zhao, E. Kim, S. Han, Y. Kim, J. I. N. Jang, S. Kwon, J. Polym. Sci. A. Polym. Chem. 2008, 46, 5115.
    • [31] C. Liu, W. Xu, X. Guan, H. Yip, X. Gong, F. Huang, Y. Cao, Macromolecules 2014, 47, 8585.
    • [32] J. Park, S. Chung, H. Lee, H. Kong, H. Jung, M. Park, S. Cho, C. Eon, H. Shim, Chem. Commun. 2010, 46, 1863.
    • [33] M. S. Almeataq, H. Yi, S. Al-Faifi, A. A. B. Alghamdi, A. Iraqi, N. W. Scarratt, T. Wang, D. G. Lidzey, Chem. Commun. 2013, 49, 2252.
    • [34] B. Qu, D. Tian, Z. Cong, W. Wang, Z. An, C. Gao, Z. Gao, H. Yang, L. Zhang, L. Xiao, Z. Chen, Q. Gong, J. Phys. Chem. C 2013, 117, 3272.
    • [35] Y. J. Kim, K. H. Park, J. Ha, D. S. Chung, Y. Kim, C. E. Park, Phys. Chem. Chem. Phys. 2014, 16, 19874.
    • [36] J. Kim, B. Park, F. Xu, D. Kim, J. Kwak, Energy Environ. Sci. 2014, 7, 4118.
    • [37] W. A. Braunecker, Z. R. Owczarczyk, A. Garcia, N. Kopidakis, R. E. Larsen, S. R. Hammond, D. S. Ginley, D. C. Olson, Chem. Mater. 2012, 24, 1346.
    • [38] A. Najari, P. Berrouard, C. Ottone, M. Boivin, Y. Zou, D. Gendron, W. Caron, P. Legros, C. N. Allen, S. Sadki, M. Leclerc, Macromolecules 2012, 45, 1833.
    • [39] B. D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Mater. 2006, 18, 2884.
    • [40] B. Y. Li, Y. Wu, P. Liu, M. Birau, H. Pan, S. Ong, Adv. Mater. 2006, 18, 3029.
    • [41] J. Warnan, C. Cabanetos, A. Labban, M. R. El Hansen, C. Tassone, M. F. Toney, P. M. Beaujuge, Adv. Mater. 2014, 26, 4357.
    • [42] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Fréchet, J. Am. Chem. Soc. 2010, 132, 7595.
    • [43] J. Park, D. S. Chung, J. Park, T. Ahn, H. Kong, Y. K. Jung, J. Lee, M. H. Yi, C. E. Park, S. Kwon, H. Shim, Org. Lett. 2007, 9, 2573.
    • [44] G. Gritzner, Pure Appl. Chem. 1990, 62, 1839.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article