LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chen, Bo; Jones, Roanne R.; Mi, Shengli; Foster, James; Alcock, Simon; Hamley, Ian; Connon, Che (2012)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as\ud a biomaterial in the management of various ocular surface disorders including corneal stem cell\ud transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that\ud the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when\ud it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were\ud expanded upon AM samples possessing different mechanical stiffness. To investigate further the\ud importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels\ud of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography\ud was characterized using scanning electron microscopy and atomic force microscopy. The\ud differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and\ud Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon\ud AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed\ud that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical\ud properties. In this paper we provide evidence to show that the preparatory method of AM for clinical\ud use can affect its mechanical properties and that these measured differences can influence the level of\ud differentiation within expanded corneal epithelial stem cells.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 26. L. P. Ang, T. Nakamura, T. Inatomi, C. Sotozono, N. Koizumi, N. Yokoi and S. Kinoshita, Arch Ophthalmol, 2006, 124, 1543-1551.
    • 27. T. Inatomi, T. Nakamura, N. Koizumi, C. Sotozono, N. Yokoi and S. Kinoshita, American journal of ophthalmology, 2006, 141, 267-275.
    • 28. J. Shimazaki, K. Konomi, S. Shimmura and K. Tsubota, Cornea, 2006, 25, 139-145.
    • 29. A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft and J. T. Daniels, Stem Cells, 2007, 25, 1402-1409.
    • 30. Y. Hao, D. H. Ma, D. G. Hwang, W. S. Kim and F. Zhang, Cornea, 2000, 19, 348-352.
    • 31. N. J. Koizumi, T. J. Inatomi, C. J. Sotozono, N. J. Fullwood, A. J. Quantock and S. Kinoshita, Curr Eye Res, 2000, 20, 173-177.
    • 32. J. J. Gicquel, H. S. Dua, A. Brodie, I. Mohammed, H. Suleman, E. Lazutina, D. K. James and A. Hopkinson, Tissue Eng Part A, 2009, 15, 1919-1927.
    • 33. C. J. Connon, T. Nakamura, A. Hopkinson, A. Quantock, N. Yagi, J. Doutch and K. M. Meek, PLoS One, 2007, 2, e1147.
    • 34. C. J. Connon, J. Doutch, B. Chen, A. Hopkinson, J. S. Mehta, T. Nakamura, S. Kinoshita and K. M. Meek, Br J Ophthalmol, 2010, 94, 1057-1061.
    • 35. A. J. Engler, S. Sen, H. L. Sweeney and D. E. Discher, Cell, 2006, 126, 677-689.
    • 36. S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore and S. Piccolo, Nature, 2011, 474, 179-183.
    • 37. L. S. Wang, J. Boulaire, P. P. Chan, J. E. Chung and M. Kurisawa, Biomaterials, 2010, 31, 8608-8616.
    • 38. R. R. Jones, Hamley. I. and Connon. C., Stem Cell Research 2012.
    • 39. X. Liu, J. Y. Lim, H. J. Donahue, R. Dhurjati, A. M. Mastro and E. A. Vogler, Biomaterials, 2007, 28, 4535-4550.
    • 40. V. Jayawarna, S. M. Richardson, A. R. Hirst, N. W. Hodson, A. Saiani, J. E. Gough and R. V. Ulijn, Acta Biomater, 2009, 5, 934-943.
    • 41. M. Zhou, A. M. Smith, A. K. Das, N. W. Hodson, R. F. Collins, R. V. Ulijn and J. E. Gough, Biomaterials, 2009, 30, 2523-2530.
    • 42. J. Benson-Martin, P. Zammaretti, G. Bilic, T. Schweizer, B. Portmann-Lanz, T. Burkhardt, R. Zimmermann and N. Ochsenbein-Kolble, Eur J Obstet Gynecol Reprod Biol, 2006, 128, 103-107.
    • 43. J. C. Kim and S. C. Tseng, Cornea, 1995, 14, 473-484.
    • 44. A. Schermer, S. Galvin and T. T. Sun, J Cell Biol, 1986, 103, 49-62.
    • 45. N. Koizumi, L. J. Cooper, N. J. Fullwood, T. Nakamura, K. Inoki, M. Tsuzuki and S. Kinoshita, Investigative ophthalmology & visual science, 2002, 43, 2114-2121.
    • 46. S. Mi, X. Yang, Q. Zhao, L. Qu, S. Chen, M. M. K and Z. Dou, Mol Reprod Dev, 2008, 75, 1607-1616.
    • 47. B. Zhao, S. L. Allinson, A. Ma, A. J. Bentley, F. L. Martin and N. J. Fullwood, Investigative ophthalmology & visual science, 2008, 49, 3395-3401.
    • 48. I. W. Hamley, V. Castelletto, C. M. Moulton, J. Rodriguez-Perez, A. M. Squires, T. Eralp, G. Held, M. R. Hicks and A. Rodger, J Phys Chem B, 2010, 114, 8244-8254.
    • 49. R. A. Brown, M. Wiseman, C. B. Chuo, U. Cheema and S. N. Nazhat, Adv Funct Mater, 2005, 15, 8.
    • 50. S. Mi, B. Chen, B. Wright and C. J. Connon, J Biomed Mater Res A, 2010, 95, 447-453.
    • 51. S. S. Vollers, D. B. Teplow and G. Bitan, Methods Mol Biol, 2005, 299, 11-18.
    • G. Wollensak, E. Spoerl and T. Seiler, American journal of ophthalmology, 2003, 135, 620-627.
    • S. Mi, V. V. Khutoryanskiy, R. R. Jones, X. Zhu, I. W. Hamley and C. J. Connon, J Biomed Mater Res A, 2011, 99, 1-8.
    • L. Kolozsvari, A. Nogradi, B. Hopp and Z. Bor, Investigative ophthalmology & visual science, 2002, 43, 2165-2168.
    • M. Tamada, M. P. Sheetz and Y. Sawada, Dev Cell, 2004, 7, 709-718.
    • K. A. Beningo, M. Dembo, I. Kaverina, J. V. Small and Y. L. Wang, J Cell Biol, 2001, 153, 881-888.
    • I. Dabin and Y. Courtois, J Cell Physiol, 1991, 147, 396-402.
    • C. J. Dowd, C. L. Cooney and M. A. Nugent, J Biol Chem, 1999, 274, 5236-5244.
    • H. Thomasen, M. Pauklin, B. Noelle, G. Geerling, J. Vetter, P. Steven, K. P. Steuhl and D. Meller, Curr Eye Res, 2011, 36, 247-255.
    • E. E. Gabison, E. Huet, C. Baudouin and S. Menashi, Prog Retin Eye Res, 2009, 28, 19- 33.
    • S. Mi, B. Chen, B. Wright and C. J. Connon, Tissue Eng Part A, 2010.
    • Connon, Tissue Eng Part A, 2011.
    • A. Hopkinson, V. A. Shanmuganathan, T. Gray, A. M. Yeung, J. Lowe, D. K. James and H. S. Dua, Tissue Eng Part C Methods, 2008, 14, 371-381.
    • B. Chen, S. Mi, B. Wright and C. J. Connon, PLoS One, 2010, 5, e13192.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article