LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Dong; Pang, Zhan (2016)
Languages: English
Types: Article
Subjects:
This paper considers dynamic booking control for a single-station car rental revenue management problem. Different from conventional airline revenue management, car rental revenue management needs to take into account not only the existing bookings but also the lengths of the existing rentals and the capacity flexibility via fleet shuttling, which yields a high-dimensional system state space. In this paper, we formulate the dynamic booking control problem as a discrete-time stochastic dynamic program over an infinite horizon. Such a model is computationally intractable. We propose a decomposition approach and develop two heuristics. The first heuristic is an approximate dynamic program (ADP) which approximates the value function using the value functions of the decomposed problems. The second heuristic is constructed directly from the optimal booking limits computed from the decomposed problems, which is more scalable compared to the ADP heuristic. Our numerical study suggests that the performances of both heuristics are close to optimum and significantly outperform the commonly used probabilistic non-linear programming (PNLP) heuristic in most of the instances. The dominant performance of our second heuristic is evidenced in a case study using sample data from a major car rental company in the UK.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article