LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Al-Moadhen, Ahmed Abdulhadi; Packianather, Michael; Setchi, Rossitza; Qiu, Renxi (2015)
Publisher: IGI Global
Languages: English
Types: Article
Subjects: TJ, TS
New method is proposed to increase the reliability of generating symbolic plans by extending the\ud Semantic-Knowledge Based (SKB) plan generation to take into account the amount of information and\ud uncertainty related to existing objects, their types and properties, as well as their relationships with\ud each other. This approach constructs plans by depending on probabilistic values which are derived\ud from learning statistical relational models such as Markov Logic Networks (MLN). An MLN module\ud is established for probabilistic learning and inference together with semantic information to provide a\ud basis for plausible learning and reasoning services in support of robot task-planning. The MLN module\ud is constructed by using an algorithm to transform the knowledge stored in SKB to types, predicates\ud and formulas which represent the main building block for this module. Following this, the semantic\ud domain knowledge is used to derive implicit expectations of world states and the effects of the action\ud which is nominated for insertion into the task plan. The expectations are matched with MLN output.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Al-Moadhen, A., Packianather, M., Setchi, R., & Qiu, R. (2014). Automation in Handling Uncertainty in Semantic-knowledge based Robotic Task-planning by Using Markov Logic Networks (Vol. 35, pp. 1023-1032).
    • Al-Moadhen, A., Qiu, R., Packianather, M., Ji, Z., & Setchi, R. (2013). Integrating Robot Task Planner with Common-sense Knowledge Base to Improve the Efficiency of Planning (Vol. 22, pp. 211-220). Procedia Computer Science.
    • Baader, D. C., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (2010). The Description Logic Handbook: Theory, Implementation and Applications. Second Edi.
    • Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., & Stein, L. A. (2004). OWL Web Ontology Language Reference. W3C. Retrieved December 15, 2013, from http://www.
    • w3.org/TR/owl-ref/ Bouguerra, A., & Karlsson, L. (2004). Hierarchical task planning under uncertainty. Proceedings of the 3rd Italian Workshop on Planning and Scheduling, 9th National Symposium of Associazione Italiana per l'Intelligenza Artificiale, Perugia, Italy.
    • Bouguerra, A., Karlsson, L., & Saffiotti, A. (2007). Handling uncertainty in semantic-knowledge based execution monitoring. Proc. of the International Conference on Intelligent Robots and Systems (IROS), (pp. 437-443).
    • doi:10.1109/IROS.2007.4399317 Eich, M., Dabrowska, M., & Kirchner, F. (2010). Semantic labeling: Classification of 3d entities based on spatial feature descriptors. IEEE International Conference on Robotics and Automation (ICRA 2010).
    • Galindo, C., Fernández-Madrigal, J. A., González-Jimenez, J., & Saffiotti, A. (2007). Using semantic information for improving efficiency of robot task planning. in: ICRA Workshop on Semantic Information in Robotics, in IEEE ICRA 2007, Rome, Italy.
    • Galindo, C., Fernández-Madrigal, J. A., González-Jimenez, J., & Saffiotti, A. (2008). Robot task planning using semantic maps. Robotics and Autonomous Systems, 56(11), 955-966. doi:10.1016/j.robot.2008.08.007 Galindo, C., González-Jimenez, J., & Fernández-Madrigal, J. A. (2004). Interactive Task Planning through Multiple Abstraction: Application to Assistant Robotics. 16th European Conference on Artifical Intelligence.
    • (pp. 1015-1016).
    • Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-Madrigal, J. A., & Gonzalez, J. (2005). Multihierarchical semantic maps for mobile robotics. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2278-2283).
    • Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through Heuristic Search.
    • Journal of Artificial Intelligence Research, 14(1), 253-302.
    • Laskey, K. B. (2008). MEBN: A language for first-order Bayesian knowledge bases. Artificial Intelligence, 172(2-3), 140-178. doi:10.1016/j.artint.2007.09.006 Lenat, D. B. (1995). CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, 38(11), 33-38. doi:10.1145/219717.219745 Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial Intelligence, 172(6-7), 852-883.
    • doi:10.1016/j.artint.2007.10.017 Ong, S. C. W., & Hsu, D.Shao Wei Png; Wee Sun Lee. (2010). Planning under Uncertainty for Robotic Tasks with Mixed Observability. The International Journal of Robotics Research, 29(8), 1053-1068.
    • doi:10.1177/0278364910369861 Papadimitriou, C. H., & Tsitsiklis, J. N. (1987). The Complexity of Markov Decision Processes. Mathematics of Operations Research, 12(3), 441-450. doi:10.1287/moor.12.3.441 Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2), 107-136.
    • doi:10.1007/s10994-006-5833-1 Singla, P., & Domingos, P. (2005). Discriminative training of Markov logic networks, Proceedings of the 20th National Conference on Artificial Intelligence, Vol. 2, (pp.868-873).
    • Tenorth, M., & Beetz, M. (2009). KNOWROB - knowledge processing for autonomous personal robots. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4261-4266). doi:10.1109/ IROS.2009.5354602 Tenorth, M. Kunze, L., Jain, D., & Beetz, M. (2010). KNOWROB-MAP - knowledge-linked semantic object maps. In 2010 10th IEEE-RAS International Conference on Humanoid Robots (pp. 430-435). IEEE.
    • Theobalt, C., Bos, J., Chapman, T., Espinosa-Romero, A., Fraser, M., Hayes, G., & Reeve, R. et al. (2002).
    • Talking to Godot: dialogue with a mobile robot. In IEEE/RSJ International Conference on Intelligent Robots and System: Vol. 2, (pp. 1338-1343). doi:10.1109/IRDS.2002.1043940
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article