LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Al-Nidawi, Y; Yahya, H; Kemp, AH (2015)
Publisher: IEEE
Languages: English
Types: Other
Subjects:
Realizing the target of high reliability and availability is a crucial concept in the IoT context. Different types of IoT applications introduce several requirements and obstacles. One of the important aspects degrading network performance is the node mobility inside the network. Without a solid and adaptive mechanism, node mobility can disrupt the network performance due to dissociations from the network. Hence, reliable techniques must be incorporated to tackle the overhead of node movement. In this paper, the overhead of mobility on both IEEE 802.15.4e timeslotted channel hopping (TSCH) and low latency deterministic (LLDN) modes is investigated. These two modes can be considered as the MAC layer of the IoT paradigm because of their importance and resilience to different network obstacles. In addition, the set of metrics and limitations that influence the network survivability will be identified to ensure efficient mobile node handling process. Both TSCH and LLDN have been implemented via the Contiki OS to determine their functionality. TSCH has been demonstrated to have better node connectivity due to the impact of frame collision in LLDN. In addition, by neglecting the overhead of collision, the LLDN has been shown to have better connectivity and low radio duty cycle (RDC).

Share - Bookmark

Cite this article