Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Demory, Marie-Estelle; Vidale, Pier Luigi; Roberts, Malcolm J.; Berrisford, Paul; Strachan, Jane; Schiemann, Reinhard; Mizielinski, Matthew S. (2013)
Publisher: Springer
Languages: English
Types: Article
The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allan RP (2009) Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J Clim 22(11):3127-3145. doi:10.1175/2008JCLI2616.1
    • Andrews T (2009) Forcing and response in simulated 20th and 21st century surface energy and precipitation trends. J Geophys Res 114:D17110. doi:10.1029/2009JD011749
    • Balan Sarojini B, Stott PA, Black E, Polson D (2012) Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean. Geophys Res Lett 39:L21706. doi:10.1029/2012GL053373
    • Baumgartner A, Reichel E (1975) The world water balance. Elsevier, Amsterdam
    • Berckmans J, Woollings T, Demory ME, Vidale PL, Roberts M (2013) Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos Sci Lett 14:34-40. doi:10.1002/asl2.412
    • Berrisford P, Ka˚llberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137(659):1381-1399. doi:10.1002/qj.864
    • Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. J Clim 24(22):5721-5739. doi:10. 1175/2011JCLI4175.1
    • Catto JL, Shaffrey LC, Hodges KI (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23(7):1621-1635. doi:10.1175/2009JCLI3318.1
    • Chahine MT (1992) The hydrological cycle and its influence on climate. Nature 359:373-380. doi:10.1038/359373a0
    • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183-203. doi:10.1007/s003820050276
    • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q J R Meteorol Soc 131(608):1759-1782. doi:10.1256/qj.04.101
    • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Ho´lm EV, Isaksen L, Ka˚llberg P, Ko¨hler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, The´paut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553-597. doi:10.1002/qj.828
    • Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee HC, Pacanowski RC, Vecchi GA, Wittenberg AT, Zeng F, Zhang R (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim 25:2755-2781. doi:10.1175/JCLI-D-11-00316.1
    • Donlon CJ, Martin M, Stark JD, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (OSTIA). Remote Sens Environ 116:140-158. doi:10. 1016/j.rse.2010.10.017
    • Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High-resolution simulations of global climate, part 1: present climate. Clim Dyn 21:371-390. doi:10.1007/s00382-003-0339-z
    • Essery RLH, Best MJ, Betts RA, Cox PM (2003) Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J Hydrometeorol 4:530-543
    • Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the landatmosphere water flux based on monthly AVHRR and ISLSCPII data, validated at 16 FLUXNET sites. Remote Sens Environ 112(3):901-919
    • Guilyardi E, Cai W, Collins M, Fedorov A, Jin FF, Kumar A, Sun DZ, Wittenberg A (2012) New strategies for evaluating ENSO processes in climate models. Bull Am Meteorol Soc 93:235-238. doi:10.1175/BAMS-D-11-00106.1
    • Hack JJ, Caron JM, Danabasoglu G, Oleson KW (2006) CCSMCAM3 climate simulation sensitivity to changes in horizontal resolution. J Clim 19:2267-2289. doi:10.1175/JCLI3764.1
    • Hagemann S, Arpe K, Roeckner E (2006) Evaluation of the hydrological cycle in the ECHAM5 model. J Clim 19(16): 3810-3827. doi:10.1175/JCLI3831.1
    • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686-5699. doi:10.1175/ JCLI3990.1
    • Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB, McLaren AJ, Hunke EC (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4(2):223-253. doi:10.5194/gmd-4-223-2011
    • Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Gatthas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSLCM5A coupled model. Clim Dyn 40(9-10):2167-2192. doi:10. 1007/s00382-012-1411-3
    • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000
    • Iorio JP, Duffy PB, Govindasamy B, Thompson SL, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgridscale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243-258. doi:10.1007/s00382-004- 0440-y
    • Jime´nez C, et al (2011) Global intercomparison of 12 land surface heat flux estimates. J Geophys Res 116:D02102. doi:10.1029/ 2010JD014545
    • John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to tropical ocean warming? Geophys Res Lett 36:L14702. doi:10.1029/2009GL038276
    • Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Cusack S, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Hill RSR, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327-1353. doi:10.1175/JCLI3712.1
    • Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6:2001-2013. doi:10.5194/bg-6-2001-2009
    • Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc 132:1839-1857. doi:10. 1256/qj.05.212
    • Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Adams JM, Altshuler EL, Cash BA, III JLK, Marx L, Stan C, Hodges KI (2012) High-resolution global climate simulations with the ECMWF model in project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155-3172. doi:10.1175/JCLI-D-11-00265.1
    • Kato S, Loeb NG, Rutan DA, Rose FG, Sun-Mack S, Miller WF, Chen Y (2012) Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv Geophys 33:395-412. doi:10. 1007/s10712-012-9179-x
    • Kimoto M, Yasutomi N, Yokoyama C, Emori S (2005) Projected changes in precipitation characteristics around Japan under the global warming. SOLA 1:85-88. doi:10.2151/sola.2005023
    • Kinter III JL, Cash B, Achuthavarier D, Adams J, Altshuler E, Dirmeyer P, Doty B, Huang B, Jin EK, Marx L, Manganello J, Stan C, Wakefield T, Palmer T, Hamrud M, Jung T, Miller M, Towers P, Wedi N, Satoh M, Tomita H, Kodama C, Nasuno T, Oouchi K, Yamada Y, Taniguchi H, Andrews P, Baer T, Ezell M, Halloy C, John D, Loftis B, Mohr R, Wong K (2013) Revolutionizing climate modeling with project Athena: a multiinstitutional, international collaboration. Bull Am Meteorol Soc 94:231-245. doi:10.1175/BAMS-D-11-00043.1
    • Kitoh A, Kusunoki S, Nakaegawa T (2011) Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J Geophys Res 116:D06105. doi:10.1029/2010JD014920
    • Liepert BG, Previdi M (2009) Do models and observations disagree on the rainfall response to global warming? J Clim 22(11):3156-3166. doi:10.1175/2008JCLI2472.1
    • Liepert BG, Previdi M (2012) Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environ Res Lett 7:014006. doi:10.1088/1748-9326/7/1/014006
    • Manganello JV, Hodges KI, III JLK, Cash BA, Marx L, Jung T, Achuthavarier D, Adams JM, Altshuler EL, Huang B, Jin EK, Stan C, Towers P, Wedi N (2012) Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J Clim 25:3867-3893. doi:10.1175/JCLI-D11-00346.1
    • Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Levy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1-26. doi:10.1007/s00382-009-0640-6
    • Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The physical properties of the atmosphere in the New Hadley Centre global environmental model (HadGEM1). Part I: model description and global climatology. J Clim 19(7): 1274-1301. doi:10.1175/JCLI3636.1
    • Matsueda M, Palmer TN (2010) Impact of horizontal resolution on simulations of summertime Euro-Atlantic blocking. In: 10th EMS annual meeting, 10th European conference on applications of meteorology (ECAM). Abstracts, held Sept. 13-17, 2010 in Zu¨rich, Switzerland
    • Milton SF, Earnshaw P (2007) Evaluation of surface water and energy cycles in the Met Office global NWP model using CEOP data. J Meteorol Soc Japan 85A:43-72. doi:10.2151/jmsj.85A.43
    • Mueller B, et al (2011) Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys Res Lett 38:L06402. doi:10.1029/2010GL046230
    • O'Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21:3815-3832. doi:10.1175/2007JCLI2065.1
    • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068-1072. doi:10.1126/science.1128845
    • Oki T, Musiake K, Matsuyama H, Masuda K (1995) Global atmospheric water balance and runoff from large river basins. Hydrol Process 9:655-678
    • Oki T, Entekhabi D, Harrold TI (2004) The global water cycle. In: Sparks RSJ, Hawkesworth CJ (eds) State of the planet: frontiers and challenges in geophysics, vol 150, pp 225-237. doi:10.1029/ 150GM18
    • Peixoto JP, Kettani MA (1973) The control of the water cycle. Sci Am 228(4):46-61
    • Pope VD, Stratton RA (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19:211-236. doi:10.1007/s00382-001-0222-8
    • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007a) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, MTignor, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007b) Climate models and their evaluation (supplementary materials). In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, et al (2011) MERRANASA's modern-era retrospective analysis for research and applications. J Clim 24(14):3624-3648. doi:10.1175/JCLI-D-11- 00015.1
    • Ringer MA, Martin GM, Greeves CZ, Hinton TJ, James PM, Pope VD, Scaife AA, Stratton RA, Inness PM, Slingo JM, Yang GY (2006) The physical properties of the atmosphere in the New Hadley Centre global environmental model (HadGEM1). Part II: aspects of variability and regional climate. J Clim 19(7):1302-1326. doi:10.1175/JCLI3636.1
    • Roberts MJ, Clayton A, Demory ME, Donners J, Vidale PL, Norton W, Shaffrey L, Stevens DP, Stevens I, Wood RA, Slingo J (2009) Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J Clim 22(10):2541-2556. doi:10. 1175/2008JCLI2537.1
    • Robertson FR, Bosilovich MG, Chen J, Miller TL (2011) The effect of satellite observing system changes on MERRA water and energy fluxes. J Clim 24:5197-5217. doi:10.1175/2011JCLI4227.1
    • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771-3791. doi:10.1175/JCLI3824.1
    • Ruiz-Barradas A, Nigam S (2005) Warm season rainfall variability over the US great plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim 18(11):1808-1830. doi:10.1175/JCLI3343.1
    • Scaife AA, Woollings T, Knight J, Martin G, Hinton T (2010) Atmospheric blocking and mean biases in climate models. J Clim 23:6143-6152. doi:10.1175/2010JCLI3728.1
    • Schiemann R, Demory ME, Shaffrey LC, Strachan J, Vidale PL, Mizielinski MS, Roberts MJ (2013) The sensitivity of the Walker circulation and Maritime Continent precipitation to climate model resolution (submitted to Clim Dyn)
    • Schlosser CA, Houser PR (2007) Assessing a satellite-era perspective of the global water cycle. J Clim 20(7):1316-1338. doi:10.1175/ JCLI4057.1
    • Seneviratne S, Viterbo P, Lu¨thi D, Scha¨r C (2004) Inferring changes in terrestrial water storage using ERA-40 reanalysis data: the Mississippi River Basin. J Clim 17(11):2039-2057
    • Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) UK HiGEM: the new UK high-resolution global environment model-model description and basic evaluation. J Clim 22(8):1861-1896. doi:10.1175/2008JCLI2508.1
    • Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36:L07403. doi:10.1029/2009GL037338
    • Staniforth A, White A, Wood N, Thuburn J, Zerroukat M, Cordero E, Davies T et al (2005) Unified model documentation paper 15. Joy of UM 6.1-model formulation. Technical report. UK Met Office Hadley Centre
    • Stephens GL, Wild M, Jr PWS, L'Ecuyer T, Kato S, Henderson DS (2012) The global character of the flux of downward longwave radiation. J Clim 25(7):2329-2340. doi:10.1175/JCLI-D-11- 00262.1
    • Strachan J, Vidale PL, Hodges K, Roberts MJ, Demory ME (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26:133-152. doi:10.1175/JCLI-D-12-00012.1
    • Takahashi K (2009) The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J Clim 22(21):5667-5675. doi:10.1175/2009JCLI2674.1
    • Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Technical report 60. PCMDI
    • Tian Y, Peters-Lidard CD, Eylander JB, Joyce RJ, Huffman GJ, Adler RF, Hsu K, Turk FJ, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114:D24101. doi:10.1029/2009JD011949
    • Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim Chang 39(4):667-694. doi:10.1023/A:1005319109110
    • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703. doi:10. 1029/2005GL022760
    • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007a) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    • Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007b) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758-769. doi:10.1175/ JHM600.1
    • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth's global energy budget. Bull Am Meteorol Soc 90(3):311-323. doi:10.1175/ 2008BAMS2634.1
    • Trenberth KE, Fasullo JT, O'Dell C, Wong T (2010) Relationships between tropical sea surface temperature and top-of-atmosphere radiation. Geophys Res Lett 37:L03702. doi:10.1029/ 2009GL042314
    • Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24(18):4907-4924. doi:10.1175/2011JCLI4171.1
    • Waliser D, Seo KW, Schubert S, Njoku E (2007) Global water cycle agreement in the climate models assessed in the IPCC AR4. Geophys Res Lett 34(16):L16705. doi:10.1029/2007GL030675
    • Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle IA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, MoufoumaOkia W, Palmer MD, Petch JC, Rooney GG, Scaife AA, Williams KD (2011) The Met Office unified model global atmosphere 3.0/ 3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Dev 4:919-941. doi:10.5194/gmd-4-919-2011
    • Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus 60(5):932-945. doi:10.1111/j.1600-0870.2008.00342.x
    • Wild M, Liepert B (2010) The Earth radiation balance as driver of the global hydrological cycle. Environ Res Lett 5(2). doi:10.1088/ 1748-9326/5/2/025003
    • Wild M, Roeckner E (2006) Radiative fluxes in the ECHAM5 general circulation model. J Clim 19:3792-3809. doi:10.1175/ JCLI3823.1
    • Wild M, Folini D, Scha¨r C, Loeb N, Dutton EG, Ko¨nig-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107-3134. doi:10.1007/s00382-012-1569-8
    • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ (2008) PC2: a prognostic cloud fraction and condensation scheme. II: climate model simulations. Q J R Meteorol Soc 134:2109-2125. doi:10.1002/qj.332
    • Yeh PJF, Irizarry M, Eltahir EAB (1998) Hydroclimatology of Illinois: a comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J Geophys Res 103(D16):19823-19837. doi:10.1029/98JD01721
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article