LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K.; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C.; Burgess, Shawn M.; Sampath, Karuna (2016)
Publisher: Genetics Society of America
Journal: G3: Genes|Genomes|Genetics
Languages: English
Types: Article
Subjects: retrovirus, gene targeting, QH426, Investigations, functional genomics, transposon, vertebrate genomes, mouse, QH426-470, Genetics, genome-wide analysis, Tol2, Ac/Ds, MMLV, zebrafish, integrations, genome engineering, ES cells
DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germline transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish, with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence integration of heterologous DNA in genomes, and have implications for targeted genome engineering.\ud \ud