LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bauer, Thomas
Publisher: Northumbria University
Languages: English
Types: Doctoral thesis
Subjects: F800, H100
Almost 50 years of thermophotovoltaic (TPV) research from various sectors has resulted in a variety of potential applications and TPV technology options. In this work the potential of commercial TPV applications is assessed with specific reference to the UK. The assessment considers competing technologies for electricity generation, namely solar photovoltaics, external and internal heat engine generators, electro¬chemical cells and direct heat-to-electricity conversion devices. Electricity generation by TPV conversion from waste heat of industrial high-temperature processes is identified as one of the most suitable TPV applications. This market is examined in more detail using three specific high-temperature processes from the iron and steel and the glass sectors. Results are extrapolated to the entire UK high-temperature industry and include potential energy and CO2 savings. This work gathers knowledge from TPV and other literature sources and evaluates the technological options for the heat source, the radiator and the PV cell for a TPV system. The optical control in terms of the angular, spatial and in particular spectral radiation distributions in cavities is identified as a specific factor for TPV conversion and critical for a system design. The impact of simultaneous radiation suppression above and below the PV cell bandgap on an ultimate efficiency level is examined. This research focuses on fused silica (SiO2) in TPV cavities and examines the aspects of radiation guidance by total internal reflection and spectral control using coupled radiative and conductive heat transfer. Finite volume modelling and experimental work have examined the radiator-glass-air-PV cell arrangement up to a SiO2 thickness of 20 cm. Both show that the efficiency improves for an increased SiO2 thickness. Finally, the novel concept of a TPV cavity consisting of a solid dielectric medium is assessed.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article