LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aad, G.; Brenner, Richard; Buszello, Claus P.; Ekelöf, Tord; Ellert, Mattias; Ferrari, Arnaud; Zwalinski, L. (2011)
Publisher: Uppsala universitet, Högenergifysik
Languages: English
Types: Article
Subjects: 530, Physical Sciences, Science & Technology, Partícules (Física nuclear), Fysik, :Ciências Físicas [Ciências Naturais], Particle Physics - Experiment, High Energy Physics - Experiment, heavy neutral particle decaying; electron; muon; ATLAS, Col·lisions (Física nuclear)
ddc: ddc:530
A search is presented for a high mass neutral particle that decays directly to the e±μ∓ final state. The data sample was recorded by the ATLAS detector in s√=7~TeVpp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb−1. The data are found to be consistent with the Standard Model background. The high e±μ∓ mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z′-like vector bosons in a lepton flavor violating model. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. info:eu-repo/semantics/publishedVersion
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. R. Barbier et al., Phys. Rep. 420, 1 (2005)
    • 2. B. Murakami, Phys. Rev. D 65, 055003 (2002)
    • 3. CDF Collaboration, D. Acosta et al., Phys. Rev. Lett. 91, 171602 (2003)
    • 4. CDF Collaboration, A. Abulencia et al., Phys. Rev. Lett. 96, 211802 (2006)
    • 5. CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 105, 191801 (2010)
    • 6. D0 Collaboration, V.M. Abazov et al., Phys. Rev. Lett. 100, 241803 (2008)
    • 7. D0 Collaboration, V.M. Abazov et al., Phys. Rev. Lett. 105, 191802 (2010)
    • 8. ATLAS Collaboration, Phys. Rev. Lett. 106, 251801 (2011)
    • 9. ATLAS Collaboration, J. Instrum. 3, S08003 (2008)
    • 10. ATLAS Collaboration, ATLAS-CONF-2011-116
    • 11. ATLAS Collaboration, J. High Energy Phys. 1012, 060 (2010)
    • 12. ATLAS Collaboration, J. High Energy Phys. 71, 1630 (2010)
    • 13. ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010)
    • 14. GEANT4 Collaboration, Nucl. Instrum. Methods A 506, 250 (2003)
    • 15. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002)
    • 16. S. Frixione, E. Laenen, P. Motylinski, J. High Energy Phys. 0603, 092 (2006)
    • 17. S. Frixione et al., J. High Energy Phys. 0807, 029 (2008)
    • 18. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006)
    • 19. G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992)
    • 20. G. Corcella et al., J. High Energy Phys. 0101, 010 (2001)
    • 21. K. Melnikov, F. Petriello, Phys. Rev. D 74, 114017 (2006)
    • 22. R. Bonciani et al., Nucl. Phys. B 529, 424 (1998)
    • 23. J. Campbell, R. Ellis, D. Rainwater, Phys. Rev. D 68, 094021 (2003)
    • 24. J. Alwall et al., J. High Energy Phys. 0709, 028 (2007)
    • 25. S. Moch, P. Uwer, Nucl. Phys. Proc. Suppl. 183, 75-80 (2008). arXiv:0807.2794
    • 26. U. Langenfeld, S. Moch, P. Uwer, in XVII International Workshop on Deep-Inelastic Scattering and Related Topics, Madrid, Spain, April 2009. arXiv:0907.2527
    • 27. N. Kidonakis, Phys. Rev. D 83, 091503 (2011)
    • 28. A. Kolmogorov, G. Ist. Ital. Attuari 4, 83 (1933)
    • 29. N.V. Smirnov, Ann. Math. Stat. 19, 279 (1948)
    • 30. S.M. Wang et al., Phys. Rev. D 74, 057902 (2006)
    • 31. S.M. Wang et al., Chin. Phys. Lett. 25, 58 (2008); and private communication with the authors. Only SM next-to-leading order diagrams for dd¯ → eμ and gg → eμ are considered, and the sneutrino width is calculated using λ311 = 0.11 and λ312 = 0.07
    • 32. S. Moretti et al., J. High Energy Phys. 0204, 028 (2002)
    • 33. P. Langacker, Rev. Mod. Phys. 81, 1199 (2009)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.