LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pretorius, AJ; Khan, IA; Errington, RJ (2017)
Publisher: Wiley
Languages: English
Types: Article
Subjects:
Live cell imaging is an important biomedical research paradigm for studying dynamic cellular behaviour. Although phenotypic data derived from images are difficult to explore and analyse, some researchers have successfully addressed this with visualisation. Nonetheless, visualisation methods for live cell imaging data have been reported in an ad hoc and fragmented fashion. This leads to a knowledge gap where it is difficult for biologists and visualisation developers to evaluate the advantages and disadvantages of different visualisation methods, and for visualisation researchers to gain an overview of existing work to identify research priorities. To address this gap, we survey existing visualisation methods for live cell imaging from a visualisation research perspective for the first time. Based on recent visualisation theory, we perform a structured qualitative analysis of visualisation methods that includes characterising the domain and data, abstracting tasks, and describing visual encoding and interaction design. Based on our survey, we identify and discuss research gaps that future work should address: the broad analytical context of live cell imaging; the importance of behavioural comparisons; links with dynamic data visualisation; the consequences of different data modalities; shortcomings in interactive support; and, in addition to analysis, the value of the presentation of phenotypic data and insights to other stakeholders.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [AA13] ANDRIENKO N., ANDRIENKO G.: Visual analytics of movement: an overview of methods, tools and procedures. Information Visualization 12, 1 (2013), 3-24. 15
    • [AES05] AMAR R., EAGAN J., STASKO J.: Low-level components of analytic activity in information visualization. In Proceedings of the IEEE Symposium on Information Visualization (2005), pp. 111-117. 3
    • [AMM∗07] AIGNER W., MIKSCH S., MÜLLER W., SCHUMANN H., TOMINSKI C.: Visualizing time-oriented data-a systematic view. Computers & Graphics 31, 3 (2007), 401-409. 15
    • [AMST11] AIGNER W., MIKSCH S., SCHUMANN S., TOMINSKI C.: Visualization of Time-Oriented Data. Springer Verlag, 2011. 15
    • [ARG∗06] AL-KOFAHI O., RADKE R. J., GODERIE S. K., SHEN Q., TEMPLE S., ROYSAM B.: Automated cell lineage construction: a rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle 5, 3 (2006), 327-335. 2, 4, 6, 7, 8, 11, 14, 16
    • [AS05] AMAR R. A., STASKO J. T.: Knowledge precepts for design and evaluation of information visualizations. IEEE Transactions on Visualization and Computer Graphics 11, 4 (2005), 432-442. 15
    • [Bar03] BARD J.: Ontologies: formalising biological knowledge for bioinformatics. BioEssays 25, 5 (2003), 501-506. 14
    • [BDA∗14] BACH B., DRAGICEVIC P., ARCHAMBAULT D., HURTER C., CARPENDALE S.: A review of temporal data visualizations based on space-time cube operations. In Proceedigns of the EG/VGTC Conference on Visualisation (2014), pp. 23-41. 15
    • [Bec] BECTON, DICKINSON AND COMPANY: Company website. http://www.bd.com. Last accessed 15 July 2015. 2
    • [BFHC12] BRAY M. A., FRASER A. N., HASAKA T. P., CARPENTER A. E.: Workflow and metrics for image quality control in large-scale high-content screens. Journal of Biomolecular Screening 17, 2 (2012), 266-274. 15
    • [BGS13] BREKER M., GYMREK M., SCHULDINER M.: A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. The Journal of Cell Biology 200, 6 (2013), 839-850. 4, 5, 6, 7, 8, 10, 11, 14, 15
    • [BM13] BREHMER M., MUNZNER T.: A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2376-2385. 3, 7, 14
    • [Car07] CARPENTER A. E.: Image-based chemical screening. Nature Chemical Biology 3, 8 (2007), 461-465. 1, 2, 3, 7
    • [CBI∗08] CEDILNIK A., BAUMES J., IBANEZ L., MEGASON S., WYLIE B.: Integration of information and volume visualization for analysis of cell lineage and gene expression during embryogenesis. In Proceedings of SPIE Visualization and Data Analysis (2008). 4, 6, 7, 8, 9, 12, 13, 14, 15
    • [CJL∗06] CARPENTER A. E., JONES T. R., LAMPRECHT M. R., CLARKE C., KANG I. H., FRIMAN O., GUERTIN D. A., CHANG J. H., LINDQUIST R. A., MOFFAT J., GOLLAND P., SABATINI D. M.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7 (2006), R100. 2, 4, 5, 6, 7, 8, 10, 14
    • [CMS99] CARD S. K., MACKINLAY J. D., SHNEIDERMAN B. (Eds.): Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco, CA, USA, 1999. 12, 15
    • [CT10] CRIVAT G., TARASKA J. W.: Imaging proteins inside cells with fluorescent tags. Trends in Biotechnology 30, 1 (2010), 8-16. 2
    • [DTW∗15] DUFFY B., THIYAGALINGAM J., WALTON S., SMITH D., TREFETHEN A., KIRKMAN-BROWN J., GAFFNEY E., CHEN M.: Glyph-based video visualization for semen analysis. IEEE Transactions on Visualization and Computer Graphics 21, 8 (2015), 980-993. 4, 5, 6, 7, 8, 10, 11, 14, 15
    • [ENS09] EILKEN H. M., NISHIKAWA S., SCHROEDER T.: Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 7231 (2009), 896-900. 4, 6, 7, 8, 11, 12, 14
    • [FHWL12] FANGERAU J., HOCKENDORF B., WITTBRODT J., LEITTE H.: Similarity analysis of cell movements in video microscopy. In Proceedings of the IEEE Symposium on Biological Data Visualization (2012), pp. 69-76. 4, 6, 7, 8, 9, 12, 13, 14, 15
    • [Fod02] FODOR I. K.: A survey of dimension reduction techniques. Tech. Rep. UCRL-ID-148494, Lawrence Livermore National Laboratory, 2002. 11
    • [GAW∗11] GLEICHER M., ALBERS D., WALKER R., JUSUFI I., HANSEN C. D., ROBERTS J. C.: Visual comparison for information visualization. Information Visualization 10, 4 (2011), 289- 309. 14
    • [GBBS09] GORDON J. L., BUGULISKIS J. S., BUSKE P. J., SIBLEY L. D.: Actin-like protein 1 (ALP1) is a component of dynamic, high molecular weight complexes in toxoplasma gondii. Cytoskeleton 67, 1 (2009), 23-31. 4, 6, 7, 9, 14, 16
    • [GE ] GE HEALTHCARE LIFE SCIENCES: Company website. http://www.gelifesciences.com. Last accessed 15 July 2015. 2
    • [GLHR09] GLAUCHE I., LORENZ R., HASENCLEVER D., ROEDER I.: A novel view on stem cell development: analysing the shape of cellular genealogies. Cell Proliferation 42, 2 (2009), 248-263. 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16
    • [GME03] GERLICH D., MATTES J., EILS R.: Quantitative motion analysis and visualization of cellular structures. Methods 29, 1 (2003), 3-13. 4, 7, 14, 15
    • [HGO10] HOULE D., GOVINDARAJU D. R., OMHOLT S.: Phenomics: the next challenge. Nature Reviews Genetics 11, 12 (2010), 855-866. 1
    • [HLLK09] HSU Y. Y., LIU Y. N., LU W. W., KUNG S. H.: Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnology and Bioengineering 104, 6 (2009), 1142-1152. 4, 6, 7, 8, 9, 13, 14, 16
    • [HS12] HEER J., SHNEIDERMAN B.: Interactive dynamics for visual analysis. Communications of the ACM 55, 4 (2012), 45- 54. 13, 16
    • [HSF∗10] HELD M., SCHMITZ M. H. A., FISCHER B., WALTER T., NEUMANN B., OLMA M. H., PETER M., ELLENBERG J., GERLICH D. W.: CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nature Methods 7, 9 (2010), 747-754. 1
    • [HWKT09] HAMILTON N. A., WANG J. T. H., KERR M. C., TEASDALE R. D.: Statistical and visual differentiation of subcellular imaging. BMC Bioinformatics 10 (2009), 94. 4, 5, 6, 8, 11, 12, 14
    • [IJS∗07] INGLESE J., JOHNSON R. L., SIMEONOV A., XIA M., ZHENG W., AUSTIN C. P., AULD D. S.: High-throughput screening assays for the identification of chemical probes. Nature Chemical Biology 3 (2007), 466-479. 2, 3
    • [Ins85] INSELBERG A.: The plane with parallel coordinates. The Visual Computer 1, 2 (1985), 69-91. 10
    • [IZCC08] ISENBERG P., ZUK T., COLLINS C., CARPENDALE S.: Grounded evaluation of information visualizations. In Proceedings of the Workshop on BEyond Time and Errors: Novel evaLuation Methods for Information Visualization (2008), pp. 6:1-6:8. 3, 4
    • [Jen13] JENSEN E. C.: Overview of live-cell imaging: requirements and methods used. The Anatomical Record 296, 1 (2013), 1-8. 1, 2
    • [JKW∗08] JONES T. R., KANG I. H., WHEELER D. B., LINDQUIST R. A., PAPALLO A., SABATINI D. M., GOLLAND P., CARPENTER A. E.: CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9 (2008), 482. 4, 5, 6, 7, 8, 10, 11, 14, 16
    • [JLM∗08] JAQAMAN K., LOERKE D., METTLEN M., KUWATA H., GRINSTEIN S., SCHMID S. L., DANUSER G.: Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods 5 (2008), 695-702. 2
    • [KHC∗07] KHAN I. A., HUSEMANN P., CAMPBELL L., WHITE N. S., WHITE R. J., SMITH P. J., ERRINGTON R. J.: ProgeniDB: a novel cell lineage database for generation associated phenotypic behavior in cell-based assays. Cell Cycle 6, 7 (2007), 868-874. 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15
    • [KKEM10] KEIM D., KOHLHAMMER J., ELLIS G., MANSMANN F.: Mastering the Information Age: Solving Problems with Visual Analytics. VisMaster, 2010. 14
    • [KLC∗11] KHAN I. A., LUPI M., CAMPBELL L., CHAPPELL S. C., BROWN M. R., WILTSHIRE M., SMITH P. J., UBEZIO P., ERRINGTON R. J.: Interoperability of time series cytometric data: a cross platform approach for modeling tumor heterogeneity. Cytometry A 79, 3 (2011), 214-226. 4, 5, 6, 7, 8, 9, 10, 14
    • [KM13] KOSARA R., MACKINLAY J.: Storytelling: the next step for visualization. Computer 46, 5 (2013), 44-50. 16
    • [KSWS08] KELLER P. J., SCHMIDT A. D., WITTBRODT J., STELZER E. H.: Reconstruction of zebrafish early embryonic
    • development by scanned light sheet microscopy. Science 322,
    • [LC05] LICHTMAN J. W., CONCHELLO J. A.: Fluorescence microscopy. Nature Methods 2, 12 (2005), 910-919. 2
    • [Lei] LEICA MICROSYSTEMS: Company website. http:// www.leica-microsystems.com. Last accessed 15 July 2015. 1
    • [LS10] LIU Z., STASKO J.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 999-1008. 3
    • [Mey13] MEYER M.: Designing visualizations for biological data. Leonardo 46, 3 (2013), 270-271. 3, 14
    • [Mit] MITOCHECK: MitoCheck project website. http://www. mitocheck.org. Last accessed 15 July 2015. 1
    • [MLF∗12] MA K. L., LIAO I., FRAZIER J., HAUSER H., KOSTIS H. N.: Scientific storytelling using visualization. IEEE Computer Graphics and Applications 32, 1 (2012), 12-19. 16
    • [Mol] MOLECULAR DEVICES: Company website. http:// www.moleculardevices.com. Last accessed 15 July 2015. 2
    • [MSD06] MEIJERING E., SMAL I., DANUSER G.: Tracking in molecular bioimaging. IEEE Signal Processing Magazine 23, 3 (2006), 46-53. 4, 5, 6, 7, 8, 9, 14
    • [MSQM13] MEYER M., SEDLMAIR M., QUINAN P. S., MUNZNER T.: The nested blocks and guidelines model. Information Visualization (2013). 3
    • [Mun09] MUNZNER T.: A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1077-2626. 3, 9, 14
    • [MWV∗03] MOLENAAR C., WIESMEIJER K., VERWOERD N. P., KHAZEN S., EILS R., TANKE H. J., DIRKS R. W.: Visualizing telomere dynamics in living mammalian cells using pna probes. EMBO Journal 22, 24 (2003), 6631-6641. 4, 5, 6, 7, 8, 9, 14, 16
    • [Nik] NIKON INSTRUMENTS: Company website. http:// www.nikoninstruments.com. Last accessed 15 July 2015. 1
    • [Nor06] NORTH C.: Toward measuring visualization insight. IEEE Computer Graphics and Applications 26, 3 (2006), 6-9. 12
    • [NWH∗10] NEUMANN B., WALTER T., HÉRICHÉ J. K., BULKESCHER J., ERFLE H., CONRAD C., ROGERS P., POSER I., HELD M., LIEBEL U., CETIN C., SIECKMANN F., PAU G., KABBE R., WÜNSCHE A., SATAGOPAM V., SCHMITZ M. H. A., CHAPUIS C., GERLICH D. W., SCHNEIDER R., EILS R., HUBER W., PETERS J. M., HYMAN A. A., DURBIN R., PEPPERKOK R., ELLENBERG J.: Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464 (2010), 721-727. 1
    • [Oly] OLYMPUS CORPORATION LIFE SCIENCES: Company website. http://www.olympus-lifescience.com/. Last accessed 15 July 2015. 1
    • [Per] PERKINELMER: Company website. http://www. perkinelmer.com. Last accessed 15 July 2015. 2
    • [Pha] PHASE FOCUS: Company website. http://www. phasefocus.com. Last accessed 15 July 2015. 2
    • [PKE15] PRETORIUS A. J., KHAN I. A., ERRINGTON R. J.: Cell lineage visualisation. Computer Graphics Forum 34, 3 (2015), 22-33. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
    • [PM07] PRASAD M., MONTELL D. J.: Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Developmental Cell 2, 6 (2007), 997-1005. 4, 6, 7, 9, 14, 15
    • [PvW09] PRETORIUS A. J., VAN WIJK J. J.: What does the user want to see? What do the data want to be? Information Visualization 8, 3 (2009), 153-166. 9, 15
    • [RFF∗08] ROBERTSON G., FERNANDEZ R., FISHER D., LEE B., STASKO J.: Effectiveness of animation in trend visualization. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1325-1332. 14
    • [Rot13] ROTH R. E.: An empirically-derived taxonomy of interaction primitives for interactive cartography and geovisualization. IEEE Transactions on Visualization and Computer Graphics 19, 2 (2013), 2356-2365. 3
    • [SBB∗12] STROBELT H., BERTINI E., BRAUN J., DEUSSEN O., GROTH U., MAYER T. U., MERHOF D.: HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform. BMC Bioinformatics 13, S-8 (2012), S4. 4, 6, 7, 8, 11, 12, 14, 16
    • [Shn96] SHNEIDERMAN B.: The eyes have it: a task by data type taxonomy for information visualizations. In Proceedings of the IEEE Symposium on Visual Languages (1996), pp. 336-343. 14
    • [SHT∗12] SCHERF N., HERBERG M., THIERBACH K., ZERJATKE T., KALKAN T., HUMPHREYS P., SMITH A., GLAUCHE I., ROEDER I.: Imaging, quantification and visualization of spatio-temporal patterning in mESC colonies under different culture conditions. Bioinformatics 28, 18 (2012), i556-i561. 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16
    • [SLSR10] SKEELS M., LEE B., SMITH G., ROBERTSON G.: Revealing uncertainty for information visualization. In Proceedings of the Working Conference on Advanced Visual Interfaces (2010), pp. 376-379. 15
    • [SMC∗06] SIGAL A., MILO R., COHEN A., GEVA-ZATORSKY N., KLEIN Y., ALALUF I., SWERDLIN N., PERZOV N., DANON T., LIRON Y., RAVEH T., CARPENTER A. E., LAHAV G., ALON U.: Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nature Methods 3, 7 (2006), 525-531. 4, 5, 6, 7, 8, 9, 13, 14, 15
    • [SMKM10] SANTIAGO-MOZOS R., KHAN I. A., MADDEN M. G.: Revealing the origin and nature of drug resistance of dynamic tumour systems. International Journal of Knowledge Discovery in Bioinformatics 1, 4 (2010), 26-53. 4, 6, 7, 8, 11, 14
    • [SMM12] SEDLMAIR M., MEYER M. D., , MUNZNER T.: Design study methodology: reflections from the trenches and the stacks. IEEE Transactions on Visualisation and Computer Graphics 18, 12 (2012), 2431-2440. 3, 14
    • [SND05] SARAIYA P., NORTH C., DUCA K.: Visualizing biological pathways: requirements analysis, systems evaluation and research agenda. Information Visualization 4, 3 (2005), 191-205. 15
    • [SNHS13] SCHULZ H. J., NOCKE T., HEITZLER M., SCHUMANN H.: A design space of visualization tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2366-2375. 3
    • [Son] SONY CORPORATION LIFE SCIENCES: Company website. http://www.sony.net/Products/LifeScience/. Last accessed 15 July 2015. 2
    • [SPG05] SIMMHAN Y. L., PLALE B., GANNON D.: A survey of data provenance in e-science. ACM SIGMOD Record 34, 3 (2005), 31-36. 13
    • [Sym] SYMPOSIUM ON BIOLOGICAL DATA VISUALIZATION: Symposium website. http://www.biovis.net. Last accessed 20 April 2015. 14
    • [Sys] SYSTEMS MICROSCOPY NETWORK OF EXCELLENCE: Project website. http://www.systemsmicroscopy.eu. Last accessed 15 July 2015. 1
    • [TBM∗99] TVARUSKÓ W., BENTELE M., MISTELI T., RUDOLF R., KAETHER C., SPECTOR D. L., GERDES H. H., EILS R.: Time-resolved analysis and visualization of dynamic processes in living cells. PNAS Journal 96, 14 (1999), 7950-7955. 4, 5, 6, 7, 8, 9, 10, 14
    • [Tes] TESCAN: Company website. http://www.tescan. com. Last accessed 15 July 2015. 2
    • [The00] THE GENE ONTOLOGY CONSORTIUM: Gene ontology: tool for the unification of biology. Nature Genetics 25, 1 (2000), 25-29. 14
    • [TMB02] TVERSKY B., MORRISON J. B., BETRANCOURT M.: Animation: can it facilitate? International Journal of HumanComputer Studies 57, 4 (2002), 247-262. 15
    • [VLH∗06] VAISBERG E. A., LENZI D., HANSEN R. L., KEON B. H., FINER J. T.: An infrastructure for high-throughput microscopy: instrumentation, informatics, and integration. Methods in Enzymology 414 (2006), 484-512. 2, 3
    • [War01] WARE C.: Designing with a 2 1/2-D attitude. Information Design Journal 10, 3 (2001), 258-265. 14
    • [War04] WARE C.: Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. 15
    • [WHN∗09] WALTER T., HELD M., NEUMANN B., HÉRICHÉ J. K., CONRAD C., PEPPERKOK R., ELLENBERG J.: Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging. Journal of Structural Biology 170, 1 (2009), 1-9. 4, 5, 6, 7, 8, 10, 14, 15
    • [WS07] WOLLMAN R., STUURMAN N.: High throughput microscopy: from raw images to discoveries. Journal of Cell Science 120, 21 (2007), 3715-3722. 1, 2, 3
    • [WSB∗10] WALTER T., SHATTUCK D. W., BALDOCK R., BASTIN M. E., CARPENTER A. E., DUCE S., ELLENBERG J., FRASER A., HAMILTON N., PIEPER S., RAGAN M. A., SCHNEIDER J. E., TOMANCAK P., HÉRICHÉ J. K.: Visualization of image data from cells to organisms. Nature Methods 7 (2010), S26-S41. 2, 13, 14
    • [WWB∗14] WAIT E., WINTER M., BJORNSSON C., KOKOVAY E., WANG Y., GODERIE S., TEMPLE S., COHEN A. R.: Visualization and correction of automated segmentation, tracking and lineaging from 5-d stem cell image sequences. BMC Bioinformatics 3, 15 (2014), 328. 4, 6, 7, 8, 12, 14, 15, 16
    • [WWR∗11] WINTER M., WAIT E., ROYSAM B., GODERIE S. K., ALI R. A. N., KOKOVAY E., TEMPLE S., COHEN A. R.: Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing. Nature Protocols 6 (2011), 1942- 1952. 4, 6, 7, 8, 12, 14, 15, 16
    • [XFP∗15] XU Z., FALLET E., PAOLETTI C., FEHRMANN S., CHARVIN G., TEIXEIRA M. T.: Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages. Nature Communications 6, 7680 (2015). 1
    • [Zei] ZEISS: Company website. http://www.zeiss.com/ microscopy/. Last accessed 15 July 2015. 1
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article