LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ceriotti, Matteo; Harkness, Patrick; McRobb, Malcolm (2014)
Publisher: Springer in association with Praxis Publishing
Languages: English
Types: Part of book or chapter of book
Subjects:
Variable geometry solar sailing potentially offers enhanced delta-V capabilities and new orbital solutions. We propose a device with such capabilities, based upon an adjustable quasi-rhombic pyramid sail geometry, and examine the benefits that can be derived from this additional flexibility. The enabling technology for this concept is the bevel crux drive, which can maintain tension in the solar sail across a wide range of apex angles. This paper explores the concept of such a device, discussing both the capabilities of the architecture and the possibilities opened up in terms of orbital and attitude dynamics.

Share - Bookmark

Cite this article