LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mudd, James J.; Lee, Tien-Lin; Muñoz-Sanjosé, V.; Zúñiga-Pérez, Jésus; Payne, D. J.; Egdell, R. G.; McConville, C. F. (Chris F.) (2014)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC, QD
N-type CdO is a transparent conducting oxide (TCO) which has promise in a number of areas including solar cell applications. In order to realize this potential a detailed knowledge of the electronic structure of the material is essential. In particular, standard density functional theory (DFT) methods struggle to accurately predict fundamental material properties such as the band gap. This is largely due to the underestimation of the Cd 4d binding energy, which results in a strong hybridization with the valence-band (VB) states. In order to test theoretical approaches, comparisons to experiment need to be made. Here, synchrotron-radiation photoelectron spectroscopy (SR-PES) measurements are presented, and comparison with three theoretical approaches are made. In particular the position of the Cd 4d state is measured with hard x-ray PES, and the orbital character of the VB is probed by photon energy dependent measurements. It is found that LDA + U using a theoretical U value of 2.34 eV is very successful in predicting the position of the Cd 4d state. The VB photon energy dependence reveals the O 2p photoionization cross section is underestimated at higher photon energies, and that an orbital contribution from Cd 5p is underestimated by all the DFT approaches.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] K. M. Yu, M. A. Mayer, D. T. Speaks, H. He, R. Zhao, L. Hsu, S. S. Mao, E. E. Haller, and W. Walukiewicz, J. Appl. Phys. 111, 123505 (2012).
    • [2] T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, and X. Wu, J. Vac. Sci. Technol. A 18, 2646 (2000).
    • [3] R. Chandiramouli and B. Jeyaprakash, Solid State Sci. 16, 102 (2013).
    • [4] R. Miloua, F. Miloua, A. Arbaoui, Z. Kebbab, and N. Benramdane, Solid State Commun. 144, 5 (2007).
    • [5] A. Schleife, C. Ro¨dl, J. Furthmu¨ller, and F. Bechstedt, New J. Phys. 13, 085012 (2011).
    • [6] P. D. C. King and T. D. Veal, J. Phys. Condens. Matter 23, 334214 (2011).
    • [7] L. Y. Lim, S. Lany, Y. J. Chang, E. Rotenberg, A. Zunger, and M. F. Toney, Phys. Rev. B 86, 235113 (2012).
    • [8] A. Schleife, F. Fuchs, J. Furthmu¨ller, and F. Bechstedt, Phys. Rev. B 73, 245212 (2006).
    • [9] M. Burbano, D. O. Scanlon, and G. W. Watson, J. Am. Chem. Soc. 133, 15065 (2011).
    • [10] F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, J. Chem. Phys. 126, 154703 (2007).
    • [11] H. Dixit, D. Lamoen, and B. Partoens, J. Phys. Condens. Matter 25, 035501 (2013).
    • [12] A. Schleife, F. Fuchs, C. Ro¨dl, J. Furthmu¨ller, and F. Bechstedt, Phys. Status Solidi 246, 2150 (2009).
    • [13] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
    • [14] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
    • [15] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997).
    • [16] P. D. C. King, T. D. Veal, A. Schleife, J. Zu´n˜iga-Pe´rez, B. Martel, P. H. Jefferson, F. Fuchs, V. Mun˜oz-Sanjose´, F. Bechstedt, and C. F. McConville, Phys. Rev. B 79, 205205 (2009).
    • [17] Y. Dou, R. G. Egdell, D. S. L. Law, N. M. Harrison, and B. G. Searle, J. Phys. Condens. Matter 10, 8447 (1998).
    • [18] J. J. Mudd, T. L. Lee, V. Mun˜oz-Sanjose´, J. Zu´n˜iga-Pe´rez, D. Hesp, J. M. Kahk, D. J. Payne, R. G. Egdell, and C. F. McConville, Phys. Rev. B 89, 035203 (2014).
    • [19] M. Trzhaskovskaya, V. Nefedov, and V. Yarzhemsky, At. Data Nucl. Data Tables 77, 97 (2001).
    • [20] M. Trzhaskovskaya, V. Nikulin, V. Nefedov, and V. Yarzhemsky, At. Data Nucl. Data Tables 92, 245 (2006).
    • [21] J. Zun˜iga Pe´rez, C. Munuera, C. Ocal, and V. Mun˜oz-Sanjose´, J. Cryst. Growth 271, 223 (2004).
    • [22] D. Singh and L. Nordstro¨m, Planewaves, Pseudopotentials, and the LAPW method, 2nd ed. (Springer, New York, 2005).
    • [23] “Elk FP-LAPW DFT Code,” http://elk.sourceforge.net/.
    • [24] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
    • [25] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    • [26] A. Janotti, D. Segev, and C. G. Van de Walle, Phys. Rev. B 74, 045202 (2006).
    • [27] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).
    • [28] S. K. Vasheghani Farahani, V. Munoz-Sanjose, J. Zuniga-Perez, C. F. McConville, and T. D. Veal, Appl. Phys. Lett. 102, 022102 (2013).
    • [29] I. N. Demchenko, J. D. Denlinger, M. Chernyshova, K. M. Yu, D. T. Speaks, P. Olalde-Velasco, O. Hemmers, W. Walukiewicz, A. Derkachova, and K. Lawniczak-Jablonska, Phys. Rev. B 82, 075107 (2010).
    • [30] J. W. Cooper, Phys. Rev. A 47, 1841 (1993).
    • [31] P. D. C. King, T. D. Veal, C. F. McConville, J. Zu´n˜iga-Pe´rez, V. Mun˜oz-Sanjose´, M. Hopkinson, E. D. L. Rienks, M. F. Jensen, and P. Hofmann, Phys. Rev. Lett. 104, 256803 (2010).
    • [32] L. F. J. Piper, L. Colakerol, P. D. C. King, A. Schleife, J. Zu´n˜iga-Pe´rez, P. A. Glans, T. Learmonth, A. Federov, T. D. Veal, F. Fuchs, V. Mun˜oz-Sanjose´, F. Bechstedt, C. F. McConville, and K. E. Smith, Phys. Rev. B 78, 165127 (2008).
    • [33] D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
    • [34] D. J. Payne, R. G. Egdell, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Monaco, G. Vanko, A. Walsh, G. W. Watson, J. Guo, G. Beamson, P.-A. Glans, T. Learmonth, and K. E. Smith, Phys. Rev. B 75, 153102 (2007).
    • [35] D. J. Payne, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Beamson, A. Fondacaro, G. Monaco, G. Vanko, and R. G. Egdell, J. Electron Spectrosc. Relat. Phenom. 169, 26 (2009).
    • [36] C. Ko¨rber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J. L. F. Da Silva, S.-H. Wei, R. G. Egdell, and D. J. Payne, Phys. Rev. B 81, 165207 (2010).
    • [37] J. Scofield, Lawrence Livermore Lab. Report No. UCRL-51326, 1973 (unpublished).
    • [38] J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).
    • [39] W. Drube, T. M. Grehk, S. Thieß, G. B. Pradhan, H. R. Varma, P. C. Deshmukh, and S. T. Manson, J. Phys. B: At. Mol. Opt. Phys. 46, 245006 (2013).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article