LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Johansen, Adam M. (2015)
Publisher: IFAC
Languages: English
Types: Unknown
Subjects: QA
The widespread use of particle methods for addressing the filtering and smoothing problems in state-space models has, in recent years, been complemented by the development of particle Markov Chain Monte Carlo (PMCMC) methods. PMCMC uses particle filters within offline systems-identification settings. We develop a modified particle filter, based around block sampling and tempering, intended to improve their exploration of the state space and the associated estimation of the marginal likelihood. The aim is to develop particle methods with improved robustness properties, particularly for parameter values which are not able to explain observed data well, for use within PMCMC algorithms. The proposed strategies do not require a substantial analytic understanding of the model structure, unlike most techniques for improving particle-filter performance.

Share - Bookmark

Cite this article