LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
van der Laan-Luijkx, IT; van der Velde, IR; Krol, MC; Gatti, LV; Miller, JB; Gloor, EU; van Leeuwen, TT; Kaiser, JW; Wiedinmyer, C; Basu, S; Clerbaux, C; Peters, W (2015)
Publisher: American Geophysical Union (AGU)
Languages: English
Types: Article
Subjects:
Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. [2014] suggests that the 2010 drought turned the normally close-to-neutral annual Amazon carbon balance into a substantial source of nearly 0.5 PgC/yr, revealing a strong drought response. In this study, we revisit this hypothesis and interpret not only the same CO2/CO vertical profile measurements, but also additional constraints on carbon exchange such as satellite observations of CO, burned area, and fire hotspots. The results from our CarbonTracker South America data assimilation system suggest that carbon uptake by vegetation was indeed reduced in 2010, but that the magnitude of the decrease strongly depends on the estimated 2010 and 2011 biomass burning emissions. We have used fire products based on burned area (GFED4), satellite-observed CO columns (IASI), fire radiative power (GFASv1) and fire hotspots (FINNv1), and found an increase in biomass burning emissions in 2010 compared to 2011 of 0.16 to 0.24 PgC/yr. We derived a decrease of biospheric uptake ranging from 0.08 to 0.26 PgC/yr, with the range determined from a set of alternative inversions using different biomass burning estimates. Our numerical analysis of the 2010 Amazon drought results in a total reduction of carbon uptake of 0.24 to 0.50 PgC/yr and turns the balance from carbon sink to source. Our findings support the suggestion that the hydrological cycle will be an important driver of future changes in Amazonian carbon exchange.

Share - Bookmark

Funded by projects

  • EC | GEOCARBON
  • EC | MACC-III
  • RCUK | Amazon Integrated Carbon A...
  • NWO | The distribution and evolut...

Cite this article