Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mbogoro, Michael M.
Languages: English
Types: Doctoral thesis
Subjects: QD
This thesis is concerned with the growth and dissolution of gypsum and\ud analogous crystalline materials, with the aim of understanding the kinetic and\ud mechanistic processes at the mineral-solution interface. The research\ud conducted was a collaborative project sponsored by Saint-Gobain Gypsum.\ud First, an image processing (IP) software package was developed to meet highly\ud specialised IP needs and expedite the extraction of vital surface information\ud from images produced in the growth and dissolution studies carried out in this\ud thesis.\ud A simple but powerful morphological analysis of characteristic etch pit features\ud formed on the basal plane of gypsum was proposed, to aid the determination of\ud intrinsic dissolution kinetics. Limiting the study to short times produced\ud microscopic active features, which exhibited high and quantitative mass\ud transport rates. At early times, the reaction was surface controlled, with the\ud edge planes dominating the process, revealing anisotropic step propagation\ud kinetics. With time, an increased contribution from mass transport was\ud observed, suggesting that at later times, the basal plane dominated reaction\ud kinetics. Common ion effects indicated a greater impact of Ca2+ than SO42- in\ud reducing dissolution rates while inert ions enhanced dissolution in a directionspecific\ud way. With this approach, microscopic phenomena were related to\ud macroscopic measurements thus reconciling experimental length scales.\ud Dissolution of the basal (010) and edge (001) surfaces of gypsum and\ud polycrystalline anhydrite, were probed at the bulk scale by coupling the channel\ud flow cell (CFC) technique which displays high mass transport rates, with off-line\ud spectrometric measurements of dissolved Ca2+. Quantitative modelling of the\ud diffusion-reaction within the CFC yielded a linear rate law for the dissolution\ud process. Rates from the basal plane and anhydrite were found to be consistent\ud with other bulk measurements, while the highly reactive edge plane exhibited high rates indicating a transport-limited process. Sodium trimetaphosphate, a\ud common humid-creep inhibitor was found to significantly retard basal plane\ud dissolution rates. Further CFC studies were carried out on industrially-relevant,\ud chemically modified CaSO4 based materials, using a simple flux approach. It was\ud found that models proposing a dissolution-precipitation pathway as the mode\ud of action of humid-creep inhibitors were less plausible than those proposing a\ud surface binding pathway.\ud Finally, the influence of solution stoichiometry, r = (aCa2+ / aSO42-) on the growth kinetics of microscopic gypsum crystals was determined at a constant\ud supersaturation. Crystal growth was found to be entirely controlled by surface\ud kinetics over the range of r, with the edge planes dominating the process. The\ud highest lateral rates were found at r = 1, diminishing sharply at r ≠ 1, and\ud indicating strong plane-specific dependence on Ca2+ and SO42- availability.\ud Additionally, dramatic changes in the morphology of grown crystals were\ud observed. Propagation of steps on the basal face revealed a complex\ud polynuclear layer-by-layer growth process for this surface. Macroscopic growth\ud rates compared well to previous bulk measurements indicating that the\ud approach used provided a comprehensive multi-scale view of gypsum growth\ud processes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Unwin, P. R.; Macpherson, J. V. Chem. Soc. Rev. 1995, 24, 109.
    • Growth Des. 2010, 10, 3909.
    • Steefel, C. I.; Maher, K. Rev. Mineral. 2009, 70, 488.
    • Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930.
    • Milchev, A.; Springer US: 2002, p 189.
    • Devos, O.; Gabrielli, C.; Tribollet, B. Electrochim. Acta 2006, 52, 285.
    • Tian, M.; Wang, J.; Kurtz, J.; Mallouk, T. E.; Chan, M. H. W. Nano Lett. 2003, 3, 919.
    • Lu, X.; Zhao, Z.; Leng, Y. J. Cryst. Growth 2005, 284, 506.
    • Dove, P. M.; Platt, F. M. Chem. Geol. 1996, 127, 331.
    • Gasperino, D.; Yeckel, A.; Olmsted, B. K.; Ward, M. D.; Derby, J. J. Langmuir 2006, 22, 6578.
    • Fan, T.-H.; Fedorov, A. G. Langmuir 2003, 19, 1347.
    • Burt, D. P.; Wilson, N. R.; Janus, U.; Macpherson, J. V.; Unwin, P. R. Langmuir 2008, 24, 12867.
    • Leonhardt, K.; Avdic, A.; Lugstein, A.; Pobelov, I.; Wandlowski, T.; Wu, M.; Gollas, B.; Denuault, G. Anal. Chem. 2011, 83, 2971.
    • Dobson, P. S.; Bindley, L. A.; Macpherson, J. V.; Unwin, P. R. Langmuir 2005, 21, 1255.
    • Dobson, P. S.; Bindley, L. A.; Macpherson, J. V.; Unwin, P. R. ChemPhysChem 2006, 7, 1019.
    • Forster, R. J. Chem. Soc. Rev. 1994, 23, 289.
    • Reznik, I. J.; Gavrieli, I.; Antler, G.; Ganor, J. Geochim. Cosmochim. Acta 2011, 75, 2187.
    • Stumm, W.; Morgan, J. J. Aquatic Chemistry, 1996; Vol. null.
    • Cowan, J. C.; Weintritt, D. J. Water-formed Scale Deposits; Gulf Publishing Company, 1976.
    • Burke, E. M.; Nancollas, G. H. Colloid Surf. A-Physicochem. Eng. Asp. 1999, 150, 151.
    • Nielsen, A. E.; Toft, J. M. J. Cryst. Growth 1984, 67, 278.
    • Nielsen, A. E. J. Cryst. Growth 1984, 67, 289.
    • Christoffersen, J.; Christoffersen, M. R.; Johansen, T. J. Cryst. Growth 1996, 163, 304.
    • Dove, P. M.; Czank, C. A. Geochim. Cosmochim. Acta 1995, 59, 1907.
    • Kowacz, M.; Putnis, C. V.; Putnis, A. Geochim. Cosmochim. Acta 2007, 71, 5168.
    • Perdikouri, C.; Putnis, C. V.; Kasioptas, A.; Putnis, A. Cryst. Growth Des. 2009, 9, 4344.
    • Piana, S.; Jones, F.; Gale, J. D. J.Am.Chem.Soc 2006, 128, 13568.
    • Ford, D. C.; Williams, P. W. Karst hydrogeology and geomorphology; John Wiley & Sons, 2007.
    • Klimchouk, A.; Andrejchuk, V. international Journal of Speleology 1996, 25, 145.
    • Klimchouk, A. International Journal of Speleology 1996, 25, 9.
    • Sohnel, O.; Garside, J. Precipitation; Butterworth-Heinemann: Oxford, 1992.
    • Bottrell, S. H.; Newton, R. J. Earth-Sci. Rev. 2006, 75, 59.
    • Peris Mora, E.; Monzó, J.; Paya, J.; Borrachero, M. V. In Studies in Environmental Science; J.J.J.M. Goumans, G. J. S., Sloot, H. A. v. d., Eds.; Elsevier: 1997; Vol.
    • Volume 71, p 581.
    • Yan, T. Y. Energy 1984, 9, 265.
    • Notholt, A. J. G.; Highley, D. E. Gypsum and Anhydrite; H.M.S.O: London, 1975.
    • Kovler, K. Cem. Concr. Res. 1998, 28, 423.
    • Bott, T. R. Fouling of Heat Exchangers; Elsevier: Amsterdam, 1995.
    • Larsen, K.; Bechgaard, K.; Stipp, S. L. S. Geochim. Cosmochim. Acta 2010, 74, 2099.
    • Tai, C. Y.; Chang, M.-C.; Wu, C.-K.; Lin, Y.-C. Chem. Eng. Sci. 2006, 61, 5346.
    • Stubicar, N.; Scrbak, M.; Stubicar, M. J. Cryst. Growth 1990, 100, 261.
    • Liu, S.-T.; Nancollas, G. H. J. Cryst. Growth 1971, 6, 281.
    • Liu, S. T.; Nancollas, G. H. J. Colloid Interface Sci. 1975, 52, 593.
    • Cryst. Growth 1982, 58, 585.
    • Witkamp, G. J.; Van der Eerden, J. P.; Van Rosmalen, G. M. J. Cryst. Growth 1990, 102, 281.
    • Amathieu, L.; Boistelle, R. J. Cryst. Growth 1988, 88, 183.
    • Bosbach, D.; Rammensee, W. Geochim. Cosmochim. Acta 1994, 58, 843.
    • Bosbach, D.; Jordan, D. G.; Rammensee, W. Eur. J. Mineral. 1995, 7, 267.
    • Acta 1996, 60, 3295.
    • Bosbach, D.; Hochella Jr, M. F. Chem. Geol. 1996, 132, 227.
    • Hall, C.; Cullen, D. C. AIChE J. 1996, 42, 232.
    • Reznik, I. J.; Gavrieli, I.; Ganor, J. Geochimica et Cosmochimica Acta 2009, 73, 6218.
    • Zhang, J.; Nancollas, G. H. J. Cryst. Growth 1992, 118, 287.
    • Keller, D. M.; Massey, R. E.; Hileman Jr., O. E. Can. J. Chem. 1980, 58, 2127.
    • Ahmi, F.; Gadri, A. Desalination 2004, 166, 427.
    • Abdel-Aal, E. A.; Rashad, M. M.; El-Shall, H. Cryst. Res. Technol. 2004, 39, 313.
    • Burton, W. K.; Cabrera, N.; Frank, F. C. Philosophical Transactions of the Royal Society of London, Series A: Mathematical Physical and Engineering Sciences 1951, 243, 299.
    • Kossel, W. Nachr. Ges. Wiss. Gottigen. Math.-Phys. Klasse 1927, 135.
    • Stranski, I. N. Z. Phys. C 1928, 136, 259.
    • Tassev, V. L.; Bliss, D. F. J. Cryst. Growth 2008, 310, 4209.
    • Growth Des. 2010, 10, 3909.
    • White, S. N. Chemical Geology 2009, 259, 240.
    • Schofield, P. F.; Knight, K. S.; Stretton, I. C. Am. Mineral. 1996, 81, 847.
    • Vanysek, P. CRC Handbook of Chemistry and Physics: Diffusion coefficients and ionic conductivities; 91st ed.; CRC Press Taylor & Francis: Boca Raton, FL, 2010-2011.
    • Chem. C 2011, 115, 10147.
    • Fan, C.; Teng, H. H. Chem. Geol. 2007, 245, 242.
    • Cryst. Growth 1982, 58, 585.
    • Smith, B. R.; Sweett, F. J. Colloid Interface Sci. 1971, 37, 612.
    • Amjad, Z. J. Colloid Interface Sci. 1988, 123, 523.
    • He, S.; Oddo, J. E.; Tomson, M. B. J. Colloid Interface Sci. 1994, 162, 297.
    • Hamdona, S. K.; Al Hadad, U. A. J. Cryst. Growth 2007, 299, 146.
    • Liu, S.-T.; Nancollas, G. H. J. Cryst. Growth 1970, 6, 281.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article