Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia (2012)
Publisher: Mathematical Sciences Publishers
Journal: Annals of Mathematics (acceptance date given)
Languages: English
Types: Article
Subjects: QA, 11F85, 11F67, 11G40, 14G35, Mathematics - Number Theory

Classified by OpenAIRE into

arxiv: Mathematics::Number Theory
We construct an Euler system in the cohomology of the tensor product of the Galois representations attached to two modular forms, using elements in the higher Chow groups of products of modular curves. We use this Euler system to prove a finiteness theorem for the strict Selmer group of the Galois representation when the associated p-adic Rankin--Selberg L-function is non-vanishing at s = 1.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Yvette Amice and Jacques Velu, Distributions p-adiques associees aux series de Hecke, Journees Arithmetiques de Bordeaux (Conf., Univ. Bordeaux, 1974), Asterisque, vol. 24-25, Soc. Math. France, Paris, 1975, pp. 119{131.
    • MR 0376534. (57) Avner Ash and Glenn Stevens, Modular forms in characteristic l and special values of their L-functions, Duke Math. J. 53 (1986), no. 3, 849{868. MR 860675. (50) , Ordinary p-adic etale cohomology groups attached to towers of elliptic modular curves. II , Math. Ann.
    • 318 (2000), no. 3, 557{583. MR 1800769. (59) Rei Otsuki, Construction of a homomorphism concerning Euler systems for an elliptic curve , Tokyo J. Math.
    • 32 (2009), no. 1, 253{278. MR 2541166. (72, 73) Bernadette Perrin-Riou, Theorie d'Iwasawa et hauteurs p-adiques, Invent. Math. 109 (1992), no. 1, 137{185.
    • MR 1168369. (76) , Fonctions L p-adiques des representations p-adiques, Asterisque 229 (1995), 1{198. MR 1327803. (76) , Systemes d'Euler p-adiques et theorie d'Iwasawa , Ann. Inst. Fourier (Grenoble) 48 (1998), no. 5, 1231{1307. MR 1662231. (71) Robert Pollack and Glenn Stevens, Overconvergent modular symbols and p-adic L-functions, Ann. Sci. Ecole Norm. Sup. 44 (2011), no. 1, 1{42. MR 2760194. (57) , Critical slope p-adic L-functions, to appear in J. London Math. Soc., 2012. (57) Daniel Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Seattle, 1972), Lecture Notes in Math., vol. 341, Springer, Berlin, 1973, pp. 85{147. MR 0338129. (9) Dinakar Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45{111. MR 1792292. (66) Kenneth A. Ribet, On l-adic representations attached to modular forms. II , Glasgow Math. J. 27 (1985), 185{194. MR 819838. (64) Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, 2000. MR 1749177. (53, 62, 63, 64, 69, 71, 72) The Sage Group, Sage Mathematics Software, http://www.sagemath.org/. (25, 56, 70, 71) Shuji Saito and Kanetomo Sato, A p-adic regulator map and niteness results for arithmetic schemes , Doc.
    • Math. (2010), Extra volume: Andrei A. Suslin's sixtieth birthday, 525{594. MR 2804264. (47) Anthony J. Scholl, An introduction to Kato's Euler systems , Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 379{460. MR 1696501. (7) Freydoon Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), no. 2, 297{355. MR 610479. (42) Goro Shimura, The special values of the zeta functions associated with cusp forms , Comm. Pure Appl. Math.
    • 29 (1976), no. 6, 783{804. (38) , On a class of nearly holomorphic automorphic forms , Ann. of Math. (2) 123 (1986), no. 2, 347{406.
    • MR 835767. (44) , Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, American Mathematical Society, Providence, RI, 2000. MR 1780262. (44) H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coe cients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, pp. 1{55. Lecture Notes in Math., Vol. 350. MR 0406931. (65) Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic , Int. Math. Res. Not. (2002), no. 7, 351{355. MR 1883180. (9)
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • RCUK | p-adic Iwasawa theory for ...
  • EC | EMRCC

Cite this article