LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tyler, C. W.; Likova, L. T.; Mineff, K. N.; Nicholas, S. C. (2015)
Publisher: Frontiers Media S.A.
Journal: Frontiers in Neurology
Languages: English
Types: Article
Subjects: RC0321, Neurology. Diseases of the nervous system, Neuroscience, oculomotor, RC346-429, traumatic brain injury, Eye Movements, vergence, binocular, fMRI, dynamics, RE, Original Research

Classified by OpenAIRE into

mesheuropmc: genetic structures, eye diseases
Binocular eye movements form a finely-tuned system that requires accurate coordination of the oculomotor dynamics of the brainstem control nuclei when tracking the fine binocular disparities required for 3D vision. They are particularly susceptible to disruption by brain injury and other neural dysfunctions. Here we report functional Magnetic Resonance Imaging (fMRI) activation of the brainstem oculomotor control nuclei by binocular saccadic and vergence eye movements, and significant reductions in their response amplitudes in mild or diffuse Traumatic Brain Injury (dTBI). Bilateral signals were recorded from a non-TBI Control group (n=11) in the oculomotor control system of the superior colliculi, the oculomotor nuclei, the abducens nuclei and in the supraoculomotor nuclei (SOA), which mediate vergence eye movements. Signals from these nuclei were significantly reduced overall in an dTBI group (n=12) and in particular for the SOA for vergence movements, which also showed significant decreases in velocity for both the convergence and divergence directions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Bahill AT, Clark M, Stark L. The main sequence, a tool for studying human eye movements. Math Biosci (1975) 24:191-204. doi:10.1016/0025-5564(75) 90075-9
    • 2. Gandhi NJ, Sparks DL. Changing views of the role of the superior colliculus in the control of gaze. In: Chalupa LM, Werner JS, editors. The Visual Neurosciences. Boston, MA: MIT Press (2004). p. 1449-65.
    • 3. Straube A, B├╝ttner U. Neuro-Ophthalmology: Neuronal Control of Eye Movements. Basel: Karger Publishers (2007).
    • 4. Horn AK, Leigh RJ. The anatomy and physiology of the ocular motor system. Handb Clin Neurol (2011) 102:21-69. doi:10.1016/B978-0-444-52903-9. 00008-X
    • 5. Cui DM, Yan YJ, Lynch JC. Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. J Neurophysiol (2003) 89:2678-84. doi:10. 1152/jn.00501.2002
    • 6. McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn (2008) 68:255-70. doi:10.1016/j.bandc.2008.08.016
    • 7. Shires J, Joshi S, Basso MA. Shedding new light on the role of the basal gangliasuperior colliculus pathway in eye movements. Curr Opin Neurobiol (2010) 20:717-25. doi:10.1016/j.conb.2010.08.008
    • 8. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, White LE, editors. Neuroscience. 2nd ed. Sunderland, MA: Sinauer Associates (2001).
    • 9. Linzenbold W, Lindig T, Himmelbach M. Functional neuroimaging of the oculomotor brainstem network in humans. Neuroimage (2011) 57:1116-23. doi:10.1016/j.neuroimage.2011.05.052
    • 10. Alvarez TL, Alkan Y, Gohel S, Douglas Ward B, Biswal BB. Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vision Res (2010) 50(21):2163-75. doi:10.1016/j.visres.2010. 08.018
    • 11. Alkan Y, Biswal BB, Alvarez TL. Differentiation between vergence and saccadic functional activity within the human frontal eye fields and midbrain revealed through fMRI. PLoS One (2011) 6(11):e25866. doi:10.1371/journal. pone.0025866
    • 12. Likova LT, Tyler CW. Stereomotion processing in the human occipital cortex. Neuroimage (2007) 38:293-305. doi:10.1016/j.neuroimage.2007.06.039
    • 13. Gamlin PD. The pretectum: connections and oculomotor-related roles. Prog Brain Res (2006) 151:379-405. doi:10.1016/S0079-6123(05)51012-4
    • 14. Gamlin PDR, Gnadt JW, Mays LE. Abducens internuclear neurons carry an inappropriate signal for ocular convergence. J Neurophysiol (1989) 62:70-81.
    • 15. Gamlin PDR, Zhang RA, Clendaniel RA, Mays LE. Behavior of identified Edinger-Westphal neurons during ocular accommodation. J Neurophysiol (1994) 72:2368-82.
    • 16. Gamlin PDR, Mays LE. Dynamic properties of medial rectus motoneurons during vergence eye movements. J Neurophysiol (1992) 67:64-74.
    • 17. Gamlin PD. Neural mechanisms for the control of vergence eye movements. Ann N Y Acad Sci (2002) 956:264-72. doi:10.1111/j.1749- 6632.2002.tb02825.x
    • 18. Busettini C, Davison RC, Gamlin PDR. The near triad: vergence, accommodation, and pupilloconstriction. In: Squire L, editor. New Encyclopedia of Neuroscience. Oxford: Elsevier (2007).
    • 19. Rambold HA, Neumann G, Helmchen A. Vergence deficits in pontine lesions. Neurology (2004) 62:1850-3. doi:10.1212/01.WNL.0000125331.95849.62
    • 20. Sander T, Sprenger A, Neumann G, Machner B, Gottschalk S, Rambold H, et al. Vergence deficits in patients with cerebellar lesions. Brain (2009) 132(Pt 1):103-15. doi:10.1093/brain/awn306
    • 21. Tyler CW, Likova LT, Mineff KN, Elsaid AM, Nicholas SC. Consequences of traumatic brain injury for human vergence dynamics. Front Neurol (2015) 5:282. doi:10.3389/fneur.2014.00282
    • 22. Nell V, Yates DW, Kruger J. An extended Glasgow Coma Scale (GCS-E) with enhanced sensitivity to mild brain injury. Arch Phys Med Rehabil (2000) 81(5):614-7.
    • 23. Tyler CW. Potential for brain imaging in mTBI. In: Tyler CW, editor. Visual Function and Its Management in mTBI. San Francisco: SK Press, SmithKettlewell Eye Research Institute (2011).
    • 24. Tyler CW, Elsaid AM, Likova LT, Gill N, Nicholas SC. Analysis of human vergence dynamics. J Vis (2012) 12:21. doi:10.1167/12.11.21
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article