LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Roberts, Brian; Summers, Robert J.; Bailey, Peter J. (2015)
Publisher: American Psychological Association
Journal: Journal of Experimental Psychology. Human Perception and Performance
Languages: English
Types: Article
Subjects: Reports, source characteristics, formant integration, auditory grouping, speech intelligibility, informational masking
An important aspect of speech perception is the ability to group or select formants using cues in the acoustic source characteristics-for example, fundamental frequency (F0) differences between formants promote their segregation. This study explored the role of more radical differences in source characteristics. Three-formant (F1+F2+F3) synthetic speech analogues were derived from natural sentences. In Experiment 1, F1+F3 were generated by passing a harmonic glottal source (F0 = 140 Hz) through second-order resonators (H1+H3); in Experiment 2, F1+F3 were tonal (sine-wave) analogues (T1+T3). F2 could take either form (H2 or T2). In some conditions, the target formants were presented alone, either monaurally or dichotically (left ear = F1+F3; right ear = F2). In others, they were accompanied by a competitor for F2 (F1+F2C+F3; F2), which listeners must reject to optimize recognition. Competitors (H2C or T2C) were created using the time-reversed frequency and amplitude contours of F2. Dichotic presentation of F2 and F2C ensured that the impact of the competitor arose primarily through informational masking. In the absence of F2C, the effect of a source mismatch between F1+F3 and F2 was relatively modest. When F2C was present, intelligibility was lowest when F2 was tonal and F2C was harmonic, irrespective of which type matched F1+F3. This finding suggests that source type and context, rather than similarity, govern the phonetic contribution of a formant. It is proposed that wideband harmonic analogues are more effective informational maskers than narrowband tonal analogues, and so become dominant in across-frequency integration of phonetic information when placed in competition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. Journal of the Acoustical Society of America, 112, 2086 -2098. http://dx.doi.org/ 10.1121/1.1510141
    • Assmann, P. F. (1995). The role of formant transitions in the perception of concurrent vowels. Journal of the Acoustical Society of America, 97, 575-584. http://dx.doi.org/10.1121/1.412281
    • Assmann, P. F. (1996). Modeling the perception of concurrent vowels: Role of formant transitions. Journal of the Acoustical Society of America, 100, 1141-1152. http://dx.doi.org/10.1121/1.416299
    • Assmann, P. F., & Summerfield, Q. (1994). The contribution of waveform interactions to the perception of concurrent vowels. Journal of the Acoustical Society of America, 95, 471- 484. http://dx.doi.org/10.1121/ 1.408342
    • Bailey, P. J., & Herrmann, P. (1993). A reexamination of duplex perception evoked by intensity differences. Perception & Psychophysics, 54, 20 - 32. http://dx.doi.org/10.3758/BF03206934
    • Bailey, P. J., Summerfield, Q., & Dorman, M. (1977). On the identification of sine-wave analogues of certain speech sounds. Haskins Laboratories: Status Report on Speech Research, SR-51, 1-25.
    • Barker, J., & Cooke, M. (1999). Is the sine-wave speech cocktail party worth attending? Speech Communication, 27, 159 -174. http://dx.doi .org/10.1016/S0167-6393(98)00081-8
    • Bench, J., Kowal, A., & Bamford, J. (1979). The BKB (Bamford-KowalBench) sentence lists for partially-hearing children. British Journal of Audiology, 13, 108 -112. http://dx.doi.org/10.3109/03005367909078884
    • Best, V., Ozmeral, E., Gallun, F. J., Sen, K., & Shinn-Cunningham, B. G. (2005). Spatial unmasking of birdsong in human listeners: Energetic and informational factors. Journal of the Acoustical Society of America, 118, 3766 -3773. http://dx.doi.org/10.1121/1.2130949
    • Bird, J., & Darwin, C. J. (1998). Effects of a difference in fundamental frequency in separating two sentences. In A. R. Palmer, A. Rees, A. Q. Summerfield, & R. Meddis (Eds.), Psychophysical and physiological advances in hearing (pp. 263-269). London, United Kingdom: Whurr.
    • Boersma, P., & Weenink, D. (2010). PRAAT, A System for Doing Phonetics by Computer (Version 5.1.28) [Computer software]. The Netherlands: Institute of Phonetic Sciences, University of Amsterdam. Retrieved from http://www.praat.org/
    • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.
    • Broadbent, D. E., & Ladefoged, P. (1957). On the fusion of sounds reaching different sense organs. Journal of the Acoustical Society of America, 29, 708 -710. http://dx.doi.org/10.1121/1.1909019
    • Brown, C. A., & Bacon, S. P. (2009). Low-frequency speech cues and simulated electric-acoustic hearing. Journal of the Acoustical Society of America, 125, 1658 -1665. http://dx.doi.org/10.1121/1.3068441
    • Brungart, D. S., Chang, P. S., Simpson, B. D., & Wang, D. (2006). Isolating the energetic component of speech-on-speech masking with ideal time-frequency segregation. Journal of the Acoustical Society of America, 120, 4007- 4018. http://dx.doi.org/10.1121/1.2363929
    • Carrell, T. D., & Opie, J. M. (1992). The effect of amplitude comodulation on auditory object formation in sentence perception. Perception & Psychophysics, 52, 437- 445. http://dx.doi.org/10.3758/BF03206703
    • Carroll, J., Tiaden, S., & Zeng, F.-G. (2011). Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. Journal of the Acoustical Society of America, 130, 2054 -2062. http://dx.doi.org/10.1121/1.3631563
    • Culling, J. F., & Summerfield, Q. (1995). Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay. Journal of the Acoustical Society of America, 98, 785-797. http://dx.doi.org/10.1121/1.413571
    • Cutting, J. E. (1976). Auditory and linguistic processes in speech perception: Inferences from six fusions in dichotic listening. Psychological Review, 83, 114 -140. http://dx.doi.org/10.1037/0033-295X.83.2.114
    • Darwin, C. J. (1981). Perceptual grouping of speech components differing in fundamental frequency and onset-time. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 33, 185- 207. http://dx.doi.org/10.1080/14640748108400785
    • Darwin, C. J. (2008). Listening to speech in the presence of other sounds. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 1011-1021. http://dx.doi.org/10.1098/rstb .2007.2156
    • Davis, M. H., Johnsrude, I. S., Hervais-Adelman, A., Taylor, K., & McGettigan, C. (2005). Lexical information drives perceptual learning of distorted speech: Evidence from the comprehension of noise-vocoded sentences. Journal of Experimental Psychology: General, 134, 222-241. http://dx.doi.org/10.1037/0096-3445.134.2.222
    • Durlach, N. I., Mason, C. R., Kidd, G., Jr., Arbogast, T. L., Colburn, H. S., & Shinn-Cunningham, B. G. (2003). Note on informational masking. Journal of the Acoustical Society of America, 113, 2984 -2987. http:// dx.doi.org/10.1121/1.1570435
    • Durlach, N. I., Mason, C. R., Shinn-Cunningham, B. G., Arbogast, T. L., Colburn, H. S., & Kidd, G., Jr. (2003). Informational masking: Counteracting the effects of stimulus uncertainty by decreasing target-masker similarity. Journal of the Acoustical Society of America, 114, 368 -379. http://dx.doi.org/10.1121/1.1577562
    • Fant, G. C. M. (1960). Acoustic theory of speech production. The Hague, The Netherlands: Mouton.
    • Foster, J. R., Summerfield, A. Q., Marshall, D. H., Palmer, L., Ball, V., & Rosen, S. (1993). Lip-reading the BKB sentence lists: Corrections for list and practice effects. British Journal of Audiology, 27, 233-246. http://dx.doi.org/10.3109/03005369309076700
    • Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2001). Spatial release from informational masking in speech recognition. Journal of the Acoustical Society of America, 109, 2112-2122. http://dx.doi.org/10.1121/1 .1354984
    • Freyman, R. L., Helfer, K. S., McCall, D. D., & Clifton, R. K. (1999). The role of perceived spatial separation in the unmasking of speech. Journal of the Acoustical Society of America, 106, 3578 -3588. http://dx.doi.org/ 10.1121/1.428211
    • Gardner, R. B., Gaskill, S. A., & Darwin, C. J. (1989). Perceptual grouping of formants with static and dynamic differences in fundamental frequency. Journal of the Acoustical Society of America, 85, 1329 -1337. http://dx.doi.org/10.1121/1.397464
    • Glasberg, B. R., & Moore, B. C. J. (2010). The loudness of sounds whose spectra differ at the two ears. Journal of the Acoustical Society of America, 127, 2433-2440. http://dx.doi.org/10.1121/1.3336775
    • Hall, J. W., III, Buss, E., & Grose, J. H. (2005). Informational masking release in children and adults. Journal of the Acoustical Society of America, 118, 1605-1613. http://dx.doi.org/10.1121/1.1992675
    • Henke, W. L. (2005). Mitsyn: A Coherent Family of High-Level Languages for Time Signal Processing [Computer software]. Belmont, MA. Retrieved from www.mitsyn.com
    • Institute of Electrical and Electronics Engineers (IEEE). (1969). IEEE recommended practice for speech quality measurements. IEEE Transactions on Audio and Electroacoustics, AU-17, 225-246.
    • Keppel, G. (1991). Design and analysis: A researcher's handbook. Upper Saddle River, NJ: Prentice Hall.
    • Kidd, G., Jr., Mason, C. R., Deliwala, P. S., Woods, W. S., & Colburn, H. S. (1994). Reducing informational masking by sound segregation. Journal of the Acoustical Society of America, 95, 3475-3480. http://dx .doi.org/10.1121/1.410023
    • Kidd, G., Jr., Mason, C. R., Richards, V. M., Gallun, F. J., & Durlach, N. I. (2008). Informational masking. In W. A. Yost & R. R. Fay (Eds.), Auditory perception of sound sources, Springer handbook of auditory research (Vol. 29, pp. 143-189). Berlin, Germany: Springer. http://dx .doi.org/10.1007/978-0-387-71305-2_6
    • Kidd, G., Jr., Mason, C. R., Rohtla, T. L., & Deliwala, P. S. (1998). Release from masking due to spatial separation of sources in the identification of nonspeech auditory patterns. Journal of the Acoustical Society of America, 104, 422- 431. http://dx.doi.org/10.1121/1.423246
    • Klatt, D. H. (1980). Software for a cascade/parallel formant synthesizer. Journal of the Acoustical Society of America, 67, 971-995. http://dx.doi .org/10.1121/1.383940
    • Kong, Y. Y., & Carlyon, R. P. (2007). Improved speech recognition in noise in simulated binaurally combined acoustic and electric stimulation. Journal of the Acoustical Society of America, 121, 3717-3727. http:// dx.doi.org/10.1121/1.2717408
    • Lee, T. Y., & Richards, V. M. (2011). Evaluation of similarity effects in informational masking. Journal of the Acoustical Society of America, 129, EL280 -EL285. http://dx.doi.org/10.1121/1.3590168
    • Lewis, D. E., & Carrell, T. D. (2007). The effect of amplitude modulation on intelligibility of time-varying sinusoidal speech in children and adults. Perception & Psychophysics, 69, 1140 -1151. http://dx.doi.org/ 10.3758/BF03193951
    • Liberman, A. M., Isenberg, D., & Rakerd, B. (1981). Duplex perception of cues for stop consonants: Evidence for a phonetic mode. Perception & Psychophysics, 30, 133-143. http://dx.doi.org/10.3758/BF03204471
    • Mann, V. A., & Liberman, A. M. (1983). Some differences between phonetic and auditory modes of perception. Cognition, 14, 211-235. http://dx.doi.org/10.1016/0010-0277(83)90030-6
    • Moore, B. C. J. (2012). An introduction to the psychology of hearing (6th ed.). Bingley, United Kingdom: Emerald.
    • Neff, D. L. (1995). Signal properties that reduce masking by simultaneous, random-frequency maskers. Journal of the Acoustical Society of America, 98, 1909 -1920. http://dx.doi.org/10.1121/1.414458
    • Nittrouer, S., & Tarr, E. (2011). Coherence masking protection for speech in children and adults. Attention, Perception, & Psychophysics, 73, 2606 -2623. http://dx.doi.org/10.3758/s13414-011-0210-y
    • Qin, M. K., & Oxenham, A. J. (2006). Effects of introducing unprocessed low-frequency information on the reception of envelope-vocoder processed speech. Journal of the Acoustical Society of America, 119, 2417-2426. http://dx.doi.org/10.1121/1.2178719
    • Rand, T. C. (1974). Letter: Dichotic release from masking for speech. Journal of the Acoustical Society of America, 55, 678 - 680. http://dx .doi.org/10.1121/1.1914584
    • Remez, R. E. (2003). Establishing and maintaining perceptual coherence: Unimodal and multimodal evidence. Journal of Phonetics, 31, 293-304. http://dx.doi.org/10.1016/S0095-4470(03)00042-1
    • Remez, R. E., Dubowski, K. R., Davids, M. L., Thomas, E. F., Paddu, N. U., Grossman, Y. S., & Moskalenko, M. (2011). Estimating speech spectra for copy synthesis by linear prediction and by hand. Journal of the Acoustical Society of America, 130, 2173-2178. http://dx.doi.org/ 10.1121/1.3631667
    • Remez, R. E., Pardo, J. S., Piorkowski, R. L., & Rubin, P. E. (2001). On the bistability of sine wave analogues of speech. Psychological Science, 12, 24 -29. http://dx.doi.org/10.1111/1467-9280.00305
    • Remez, R. E., Rubin, P. E., Berns, S. M., Pardo, J. S., & Lang, J. M. (1994). On the perceptual organization of speech. Psychological Review, 101, 129 -156. http://dx.doi.org/10.1037/0033-295X.101.1.129
    • Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212, 947-949. http://dx.doi.org/10.1126/science.7233191
    • Roberts, B., Summers, R. J., & Bailey, P. J. (2010). The perceptual organization of sine-wave speech under competitive conditions. Journal of the Acoustical Society of America, 128, 804 - 817. http://dx.doi.org/ 10.1121/1.3445786
    • Roberts, B., Summers, R. J., & Bailey, P. J. (2011). The intelligibility of noise-vocoded speech: Spectral information available from acrosschannel comparison of amplitude envelopes. Proceedings of the Royal Society B: Biological Sciences, 278, 1595-1600. http://dx.doi.org/ 10.1098/rspb.2010.1554
    • Roberts, B., Summers, R. J., & Bailey, P. J. (2014). Formant-frequency variation and informational masking of speech by extraneous formants: Evidence against dynamic and speech-specific acoustical constraints. Journal of Experimental Psychology: Human Perception and Performance, 40, 1507-1525. http://dx.doi.org/10.1037/a0036629
    • Rosenberg, A. E. (1971). Effect of glottal pulse shape on the quality of natural vowels. Journal of the Acoustical Society of America, 49, 583- 590. http://dx.doi.org/10.1121/1.1912389
    • Scharf, B. (1961). Complex sounds and critical bands. Psychological Bulletin, 58, 205-217. http://dx.doi.org/10.1037/h0049235
    • Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12, 182-186. http://dx.doi.org/ 10.1016/j.tics.2008.02.003
    • Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods (6th ed.). Ames: Iowa University Press.
    • Souza, P., & Rosen, S. (2009). Effects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speech. Journal of the Acoustical Society of America, 126, 792- 805. http://dx.doi.org/10.1121/1 .3158835
    • Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press.
    • Summerfield, Q., & Assmann, P. F. (1991). Perception of concurrent vowels: Effects of harmonic misalignment and pitch-period asynchrony. Journal of the Acoustical Society of America, 89, 1364 -1377. http://dx .doi.org/10.1121/1.400659
    • Summers, R. J., Bailey, P. J., & Roberts, B. (2010). Effects of differences in fundamental frequency on across-formant grouping in speech perception. Journal of the Acoustical Society of America, 128, 3667-3677. http://dx.doi.org/10.1121/1.3505119
    • Summers, R. J., Bailey, P. J., & Roberts, B. (2012). Effects of the rate of formant-frequency variation on the grouping of formants in speech perception. Journal of the Association for Research in Otolaryngology, 13, 269 -280. http://dx.doi.org/10.1007/s10162-011-0307-y
    • Turner, C. W., Gantz, B. J., Vidal, C., Behrens, A., & Henry, B. A. (2004). Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing. Journal of the Acoustical Society of America, 115, 1729 -1735. http://dx.doi.org/10.1121/1.1687425
    • Verschuur, C., Boland, C., Frost, E., & Constable, J. (2013). The role of first formant information in simulated electro-acoustic hearing. Journal of the Acoustical Society of America, 133, 4279 - 4289. http://dx.doi.org/ 10.1121/1.4803910
    • Warren, R. M., Reiner, K. A., Bashford, J. A., Jr., & Brubaker, B. S. (1995). Spectral redundancy: Intelligibility of sentences heard through narrow spectral slits. Perception & Psychophysics, 57, 175-182. http:// dx.doi.org/10.3758/BF03206503
    • Whalen, D. H., & Liberman, A. M. (1987). Speech perception takes precedence over nonspeech perception. Science, 237, 169 -171. http:// dx.doi.org/10.1126/science.3603014
    • Zurek, P. M. (1987). The precedence effect. In W. A. Yost & G. Gourevitch (Eds.), Directional hearing (pp. 85-105). New York, NY: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-4738-8_4
    • Zwicker, E., Flottorp, G., & Stevens, S. S. (1957). Critical band width in loudness summation. Journal of the Acoustical Society of America, 29, 548 -557. http://dx.doi.org/10.1121/1.1908963 Received October 20, 2014
    • Revision received January 21, 2015 Accepted January 22, 2015
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    58
    58%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | Understanding speech in th...

Cite this article