LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
DELPHI Collaboration; Abdallah, J. (2011)
Publisher: Springer
Languages: English
Types: Article
Subjects: :Mathematics and natural science: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], QC, Particle Physics - Experiment, Settore FIS/01 - Fisica Sperimentale, High Energy Physics - Experiment, lund Monte-Carlo; jet fragmentation; heavy quarks; Z-decays; string model; E+E-physics; B(B)over-bar; extraction

Classified by OpenAIRE into

arxiv: Computer Science::Mathematical Software
The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E^weak_B. The average value of x^weak_B = E^weak_B/E_beam is measured to be 0.699 +/- 0.011. The resulting x^weak_B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA~6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21} and b=0.642^{+0.073}_{-0.063} GeV^-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^weak_B is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10} and b=0.509^{+0.024}_{-0.023} GeV^-2, with a correlation factor rho = 92.6%. The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E^weak_B. The average value of x^weak_B = E^weak_B/E_beam is measured to be 0.699 +/- 0.011. The resulting x^weak_B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA~6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21} and b=0.642^{+0.073}_{-0.063} GeV^-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^weak_B is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10} and b=0.509^{+0.024}_{-0.023} GeV^-2, with a correlation factor rho = 92.6%.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] E. Witten, Nucl. Phys. B 120 (1977) 189.
    • [2] C.H. Llewellyn Smith, Phys. Lett. B 79 (1978) 83.
    • [3] R.J. DeWitt, et al., Phys. Rev. D 19 (1979) 2046; R.J. DeWitt, et al., Phys. Rev. D 20 (1979) 1751 (Erratum).
    • [4] T.F. Walsh, P. Zerwas, Phys. Lett. B 44 (1973) 195.
    • [5] R.L. Kingsley, Nucl. Phys. B 60 (1973) 45.
    • [6] W. Słomi n´ski, J. Szwed, Phys. Lett. B 387 (1996) 861.
    • [7] W. Słomi n´ski, J. Szwed, Acta Phys. Pol. B 27 (1996) 1887.
    • [8] W. Słomi n´ski, J. Szwed, Acta Phys. Pol. B 28 (1997) 1493.
    • [9] W. Słomi n´ski, J. Szwed, Eur. Phys. J. C 22 (2001) 123.
    • [10] W. Słomi n´ski, Acta Phys. Pol. B 30 (1999) 369.
    • [11] R. Nisius, Phys. Rep. 332 (2000) 165.
    • [12] M. Krawczyk, A. Zembrzuski, M. Staszel, Phys. Rep. 345 (2001) 265.
    • [13] V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15 (1975) 181.
    • [14] T. Uematsu, T.F. Walsh, Phys. Lett. B 101 (1981) 263.
    • [15] A. Heister, et al., ALEPH Collaboration, Eur. Phys. J. C 30 (2003) 145.
    • [16] P. Aarnio, et al., DELPHI Collaboration, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 303 (1991) 233.
    • [17] P. Abreu, et al., DELPHI Collaboration, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 378 (1996) 57.
    • [18] T. Sjöstrand, Comput. Phys. Commun. 82 (1994) 74.
    • [19] T. Sjöstrand, L. Lönnblad, S. Mrenna, P. Skands, PYTHIA 6.3 physics and manual, LU TP 03-38, arXiv:hep-ph/0308153.
    • [20] P. Aurenche, et al., in: Gamma-gamma Physics, 'Physics at LEP2', CERN 96-01 vol. 2, Sec. 5.5, 1996, p. 103.
    • [21] F.A. Berends, R. Pittau, R. Kleiss, Comput. Phys. Commun. 85 (1995) 437.
    • [22] T. Alderweireld, et al., in: S. Jadach, G. Passarino, R. Pittau (Eds.), Reports of the Working Groups on Precision Calculations for LEP2 Physics, CERN 2000-009, 2000, p. 219.
    • [23] M. Glück, E. Reya, A. Vogt, Phys. Rev. D 46 (1992) 1973.
    • [24] M. Glück, E. Reya, A. Vogt, Phys. Rev. D 45 (1992) 3986.
    • [25] G.A. Schuler, T. Sjöstrand, Phys. Lett. B 376 (1996) 193.
    • [26] P. Aurenche, M. Fontannaz, J.Ph. Guillet, Eur. Phys. J. C 44 (2005) 395.
    • [27] F. Cornet, P. Jankowski, M. Krawczyk, Phys. Rev. D 70 (2004) 093004.
    • [28] W. Slominski, H. Abramowicz, A. Levy, Eur. Phys. J. C 45 (2006) 633.
  • No related research data.
  • No similar publications.