Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Zhenwei; Kermode, James R.; De Vita, Alessandro (2015)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC, Physics and Astronomy (all)
We present a molecular dynamics scheme which combines first-principles and machine-learning (ML) techniques in a single information-efficient approach. Forces on atoms are either predicted by Bayesian inference or, if necessary, computed by on-the-fly quantum-mechanical (QM) calculations and added to a growing ML database, whose completeness is, thus, never required. As a result, the scheme is accurate and general, while progressively fewer QM calls are needed when a new chemical process is encountered for the second and subsequent times, as demonstrated by tests on crystalline and molten silicon.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland. [1] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and
    • J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). [2] K. Burke, J. Chem. Phys. 136, 150901 (2012). [3] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). [4] E. Hernández, M. J. Gillan, and C. M. Goringe, Phys. Rev.
    • B 55, 13485 (1997). [5] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera,
    • 14, 2745 (2002). [6] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C.
    • Payne, J. Chem. Phys. 122, 084119 (2005). [7] D. R. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503
    • (2012). [8] N. Hine, P. Haynes, A. A. Mostofi, C.-K. Skylaris, and M.
    • Payne, Comput. Phys. Commun. 180, 1041 (2009). [9] F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994). [10] M. Z. Bazant, E. Kaxiras, and J. F. Justo, Phys. Rev. B 56,
    • 8542 (1997). [11] Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstan-
    • topoulos, Phys. Rev. B 59, 3393 (1999). [12] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A.
    • Goddard, J. Phys. Chem. A 105, 9396 (2001). [13] P. Tangney and S. Scandolo, J. Chem. Phys. 117, 8898 (2002). [14] M. Finnis, Interatomic forces in condensed matter, in
    • Press, Oxford, 2003). [15] M. Payne, I. Stich, A. De Vita, M. Gillan, and L. Clarke,
    • Faraday Discuss. 96, 151 (1993). [16] D. MacKay, Information Theory, Inference and Learning
    • England, 2003). [17] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401
    • (2007). [18] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys.
    • Rev. Lett. 104, 136403 (2010). [19] A. De Vita and R. Car, Mater. Res. Soc. Symp. Proc. 491,
    • 473 (1997). [20] G. Csányi, T. Albaret, M. C. Payne, and A. De Vita, Phys.
    • Rev. Lett. 93, 175503 (2004). [21] K. Parlinski, Z.-Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78,
    • 4063 (1997). [22] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106
    • (2008). [23] C. E. Rasmussen and C. K. I. Williams, in International
    • 2006), Vol. 14. [24] N. Bernstein, J. R. Kermode, and G. Csányi, Rep. Prog.
    • Phys. 72, 026501 (2009). [25] See Supplemental Material at http://link.aps.org/
    • supplemental/10.1103/PhysRevLett.114.096405, which in-
    • cludes Refs. [26,27], specifically Section S1, for full details
    • of the GP regression scheme. [26] R. Taylor, Proc. Am. Math. Soc. 5, 753 (1954). [27] J. R. Kermode, S. Cereda, P. Tangney, and A. De Vita,
    • J. Chem. Phys. 133, 094102 (2010). [28] Using a symmetry-faithful description of the physical
    • breaking phenomena. [29] A. P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87,
    • 184115 (2013). [30] See Supplemental Material at http://link.aps.org/
    • supplemental/10.1103/PhysRevLett.114.096405 specifi-
    • cally Section S1 for a more complete discussion. [31] In the σerr → 0 limit the GP becomes equivalent to straight-
    • is a common problem [16]. [32] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk,
    • T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58,
    • 7260 (1998). [33] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985). [34] G. Csányi, T. Albaret, G. Moras, A. De Vita, and M. C.
    • Payne, J. Phys. Condens. Matter 17, R691 (2005). [35] See Supplemental Material at http://link.aps.org/
    • supplemental/10.1103/PhysRevLett.114.096405, specifi-
    • cally Section S2. [36] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J.
    • tallographie 220, 567 (2009). [37] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). [38] See Supplemental Material at http://link.aps.org/
    • supplemental/10.1103/PhysRevLett.114.096405, specifi-
    • cally Section S3 and Figs. S1 and S2. [39] G. Moras, R. Choudhury, J. R. Kermode, G. Csányi,
    • Nanomechanics (Springer, New York, 2010) pp. 1-23. [40] D. Quigley and M. I. J. Probert, J. Chem. Phys. 120, 11432
    • (2004). [41] J. C. Grossman and L. Mitas, Phys. Rev. Lett. 94, 056403
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article