LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stoker, Mark
Languages: English
Types: Doctoral thesis
Subjects:
The work presented describes the development of a capstan drive system for the transport of motion picture film. From a model description of the plant and computer aided system design analysis, control algorithms are formulated. The work shows how these relativity complex control algorithms are implemented by making use of the parallel processing capabilities of the transputer. \ud \ud A critical investigation of current film transport methods is undertaken leading to the design and testing of a prototype capstan drive mechanism. The capstan drive system is\ud shown to eliminate problems of sprocket drives and their associated mechanisms. A multi-input multi-output controller is presented using state-space methods of design. The developed control strategies are fully tested on a model of the plant before hardware testing. The control outputs of the system are speed and tension. The final control solution\ud is shown to be a combination of full-state feedback, integral control, and a Kalman filter estimator for the elimination of system disturbances. The transputer implementation of the developed control strategies is presented together with a comparison between simulation and experimental results. It is shown that computational times can be reduced by using multiple transputers and placing computation-intensive\ud sections of the control algorithm on separate processors. Transputer configurations and interconnections are shown. The capstan system has been shown to allow faster printing speeds with improved transport accuracy leading to better quality of the final picture print. The system has been shown to be 'robust' to external disturbances and changes in plant parameters.

Share - Bookmark

Cite this article