Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karcanias, N.; Vafiadis, D. (2012)
Languages: English
Types: Article
Subjects: TA
The disturbance decoupling and the simultaneous disturbance and input–output decoupling problems for singular systems are considered in the context of the matrix fraction description (MFD) of the system. Solvability conditions are obtained in terms of the composite matrix of a column reduced MFD of the system, a characterisation of the fixed poles of both problems is given and it is shown that the remaining poles can be arbitrarily assigned.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Ailon. A solution to the disturbance decoupling problem in singular systems via analogy with state-space systems. Sys. Contr. Letters, 19:401{ 411, 1992.
    • [2] A. Ailon. A solution to the disturbance decoupling problem in singular systems via analogy with statespace systems. Automatica, 29(6):1541{1545, 1993.
    • [3] M. Kociecki Banaszuk, A. and K. M. Przyluski. The disturbance decoupling problem for implicit linear discrete-time systems. SIAM J. Control Optimiz., 28:1270{1293, 1990.
    • [4] G. Basile and G. Marro. Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Applic., 3(5):306{315, 1969.
    • [5] J. F. Camart, M. Malabre, and J.-C. MartinezGarcia. Fixed poles of simultaneous disturbance rejection and decoupling: a geometric approach. Automatica, 37:297{302, 2001.
    • [6] C. Commault Dion, J. M. and J. Montoya. Simultaneous decoupling and disturbance rejection a structural approach. Int. J. Contr., 59(8):1325{1344, 1994.
    • [7] L. R. Fletcher and A. Asaraai. On disturbance decoupling in descriptor systems. Siam J. Control Optimiz., 27(6):1319{1332, 1989.
    • [8] G. D. Forney. Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control, 13:493{520, 1975.
    • [9] T. Kailath. Linear Systems. Prentice Hall, Englewood Cli s, 1980.
    • [10] N. Karcanias. Mininal bases of matrix pencils: Algebraic, toeplitz structure and geometric properties. Linear Alg. and Appl, Special Issue on Linear Systems, 205{206:831{868, 1994.
    • [11] N. Karcanias. Geometric properties, invariants and the structure of minimal bases of rational vector spaces. IMA J.of Control Theory and Information, 33:1{11, 1996.
    • [12] N. Karcanias and H. Eliopoulou. A classi cation of minimal bases for singular systems. In M. A. Kaashoek, editor, Progress in Systems and control Theory, Proceedings of 1989 MTNS Conference, pages 255{262, Amsterdam, 1990. Birkhauser.
    • [13] T. G. Koussiouris. frequency domain approach to the decoupling problem. Int. J. Control, 29:991{ 1010, 1979.
    • [14] T. G. Koussiouris and K. G. Tzierakis. Frequencydomain conditions for disturbance rejection and decoupling with stability or pole placement. Automatica, 33(6):229{234, 1996.
    • [15] G. Lebret. Structural solution of the disturbance decoupling problem for implicit linear discrete-time systems. In Proc. Second International Symposium on Implicit and Robust Systems, pages 127{130, Warsaw, 1991.
    • [16] M. Malabre, V. Kucera, and P. Zagalak. Reachability and controllability indices for linear descriptor systems. Syst. Contr. Letters, 1:119{123, 1990.
    • [17] M. Malabre, J. C. Martinez-Garcia, and B. DelMuro-Cuellar. On the xed poles for disturbance rejection. Automatica, 33(6):1209{1211, 1997.
    • [18] H.H. Rosenbrock. Structural properties of linear dynamical systems. Int. J. Contr., 20(2):191{202, 1974.
    • [19] D. Va adis and N. Karcanias. Canonical forms for descriptor systems under restricted system equivalence. Automatica, 33(5):955{958, 1997.
    • [20] D. Va adis and N. Karcanias. Decoupling and pole assignment of singular systems: A frequency domain approach. Automatica, 33(8):1555{1560, 1997.
    • [21] D. Va adis and N. Karcanias. Block decoupling and pole assignment of singular systems: a frequency domain approach. Int. J. Contr., 76(2):185{192, 2003.
    • [22] W. M. Wonham. Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York, 3rd edition, 1985.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article