Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Miller, Paul A.; Laxon, Seymour W.; Feltham, Daniel L. (2007)
Publisher: American Geophysical Union
Languages: English
Types: Article
[1] Decadal hindcast simulations of Arctic Ocean sea ice thickness made by a modern dynamic-thermodynamic sea ice model and forced independently by both the ERA-40 and NCEP/NCAR reanalysis data sets are compared for the first time. Using comprehensive data sets of observations made between 1979 and 2001 of sea ice thickness, draft, extent, and speeds, we find that it is possible to tune model parameters to give satisfactory agreement with observed data, thereby highlighting the skill of modern sea ice models, though the parameter values chosen differ according to the model forcing used. We find a consistent decreasing trend in Arctic Ocean sea ice thickness since 1979, and a steady decline in the Eastern Arctic Ocean over the full 40-year period of comparison that accelerated after 1980, but the predictions of Western Arctic Ocean sea ice thickness between 1962 and 1980 differ substantially. The origins of differing thickness trends and variability were isolated not to parameter differences but to differences in the forcing fields applied, and in how they are applied. It is argued that uncertainty, differences and errors in sea ice model forcing sets complicate the use of models to determine the exact causes of the recently reported decline in Arctic sea ice thickness, but help in the determination of robust features if the models are tuned appropriately against observations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arctic Climate Impact Assessment (2004), Arctic Climate Impact Assessment: Scientific Report, 144 pp., Cambridge Univ. Press, New York.
    • Bitz, C. M., and W. H. Lipscomb (1999), An energy-conserving thermodynamic sea ice model for climate study, J. Geophys. Res., 104, 15,669 - 15,677.
    • Bromwich, D. H., and R. L. Fogt (2004), Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958 - 2001, J. Clim., 17(23), 4603 - 4619.
    • Bromwich, D. H., and S.-H. Wang (2005), Evaluation of the NCEP-NCAR and ECMWF 15- and 40-Yr reanalyses using rawinsonde data from two independent Arctic field experiments, Mon. Weather Rev., 133, 3562 - 3578.
    • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally (2002), Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data [CD-ROM], Natl. Snow and Ice Data Cent., Boulder, Colo.
    • Comiso, J. C. (2002), A rapidly declining perennial sea ice cover in the Arctic, Geophys. Res. Lett., 29(20), 1956, doi:10.1029/2002GL015650.
    • Curry, J. A., J. L. Schramm, A. Alam, R. Reeder, T. E. Arbetter, and P. Guest (2002), Evaluation of data sets used to force sea ice models in the Arctic Ocean, J. Geophys. Res., 107(C10), 8027, doi:10.1029/2000JC000466.
    • Flato, G. M. (1995), Spatial and temporal variability of Arctic ice thickness, Ann. Glaciol., 21, 323 - 329.
    • Fowler, C. (2003), Polar Pathfinder daily 25km EASE-grid sea ice motion vectors, http://nsidc.org/data/nsidc-0116.html, Natl. Snow and Ice Data Cent., Boulder, Colo.
    • Hibler, W. D., III (1979), A dynamic-thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815 - 846.
    • Hibler, W. D., III, and K. Bryan (1984), Ocean circulation: Its effects on seasonal sea-ice simulations, Science, 224, 489 - 492.
    • Hilmer, M., and P. Lemke (2000), On the decrease of Arctic sea ice volume, Geophys. Res. Lett., 27, 3751 - 3754.
    • Hunke, E. C., and J. K. Dukowicz (1997), An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849 - 1867.
    • Hunke, E. C., and J. K. Dukowicz (2002), The elastic-viscous-plastic sea ice dynamics model in generalized orthogonal curvilinear coordinates on a sphere-Incorporation of metric terms, Mon. Weather Rev., 130, 1848 - 1865.
    • Hunke, E. C., and W. H. Lipscomb (2001), CICE: The Los Alamos Sea Ice Model, documentation and software user's manual, version 3, LACC-98- 16, Los Alamos Natl. Lab., Los Alamos, N. M. (Available at http:// climate.lanl.gov/Models/CICE/index.htm)
    • Jordan, R. E., E. L. Andreas, and A. P. Makshtas (1999), Heat budget of snow-covered sea ice at North Pole 4, J. Geophys. Res., 104, 7785 - 7806.
    • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437 - 470.
    • Ko┬Ęberle, C., and R. Gerdes (2003), Mechanisms determining the variability of Arctic sea ice conditions and export, J. Clim., 16, 2843 - 2858.
    • Laxon, S., N. Peacock, and D. Smith (2003), High interannual variability of sea ice thickness in the Arctic region, Nature, 425, 947 - 950.
    • Lindsay, R. W., and J. Zhang (2005), The thinning of Arctic sea ice, 1988 - 2003: Have we passed a tipping point?, J. Clim., 18, 4879 - 4894.
    • Liu, J., J. A. Curry, W. B. Rossow, J. R. Key, and X. Wang (2005), Comparison of the surface radiative flux data sets over the Arctic Ocean, J. Geophys. Res., 110, C02015, doi:10.1029/2004JC002381.
    • Miller, P. A., S. W. Laxon, and D. L. Feltham (2005), Improving the spatial distribution of modeled Arctic sea ice thickness, Geophys. Res. Lett., 32, L18503, doi:10.1029/2005GL023622.
    • Miller, P. A., S. W. Laxon, D. L. Feltham, and D. J. Cresswell (2006), Optimization of a sea ice model using basin-wide observations of Arctic sea ice thickness, extent and velocity, J. Clim., 19, 1089 - 1108.
    • Parkinson, C. L., and D. J. Cavalieri (2002), A 21 year record of Arctic seaice extents, and their regional, seasonal and monthly variability and trends, Ann. Glaciol., 34, 441 - 446.
    • Parkinson, C. L., and W. M. Washington (1979), A large-scale numerical model of sea ice, J. Geophys. Res., 84, 311 - 337.
    • Perovich, D. K., et al. (1999), Year on ice gives climate insights, Eos Trans. AGU, 80(41), 481, 485 - 486.
    • Rigor, I. G., R. L. Colony, and S. Martin (2000), Variations in surface air temperature observations in the Arctic 1979 - 97, J. Clim., 13, 896 - 914.
    • Rothrock, D. A., and J. Zhang (2005), Arctic Ocean sea ice volume: What explains its recent depletion?, J. Geophys. Res., 110, C01002, doi:10.1029/2004JC002282.
    • Rothrock, D. A., Y. Yu, and G. A. Maykut (1999), Thinning of the Arctic sea ice cover, Geophys. Res. Lett., 26, 3469 - 3472.
    • Rothrock, D., J. Zhang, and Y. Yu (2003), The Arctic ice thickness of the 1990s: A consistent view from observations and models, J. Geophys. Res., 108(C3), 3083, doi:10.1029/2001JC001208.
    • Simmons, A. J., and J. K. Gibson (2000), The ERA-40 project plan, Proj. Rep. Ser. 1, 63 pp., Eur. Cent. for Medium-Range Weather Forecasts, Reading, U.K.
    • Smith, D. M. (1998), Recent increase in the length of the melt season of perennial Arctic sea ice, Geophys. Res. Lett., 25, 655 - 658.
    • Stroeve, J. C., M. C. Serreze, F. Fetterer, T. Arbetter, W. Meier, J. Maslanik, and K. Knowles (2005), Tracking the Arctic's shrinking ice cover: Another extreme September minimum in 2004, Geophys. Res. Lett., 32, L04501, doi:10.1029/2004GL021810.
    • Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony (1975), The thickness distribution of sea ice, J. Geophys. Res., 80, 4501 - 4513.
    • Vowinckel, E., and S. Orvig (1970), The climate of the North Pole Basin, in Climates of the Polar Regions, World Surv. Climatol., vol. 14, edited by S. Orvig, pp. 1 - 37, Elsevier, New York.
    • Wensnahan, M., and D. A. Rothrock (2005), Sea ice draft from submarinebased sonar: Establishing a consistent record from analog and digitally recorded data, Geophys. Res. Lett., 32, L11502, doi:10.1029/ 2005GL022507.
    • Wilchinsky, A. V., D. L. Feltham, and P. A. Miller (2006), A multi-layer sea ice model accounting for sliding friction, J. Phys. Oceanogr., 36(9), 1719 - 1738.
    • Yu, Y., G. A. Maykut, and D. A. Rothrock (2004), Changes in the thickness distribution of Arctic sea ice between 1958 - 1970 and 1993 - 1993, J. Geophys. Res., 109, C08004, doi:10.1029/2003JC001982.
    • Zhang, J., W. D. Hibler III, M. Steele, and D. A. Rothrock (1998a), Arctic ice-ocean modeling with and without climate restoring, J. Phys. Oceanogr., 28, 191 - 217.
    • Zhang, J., D. A. Rothrock, and M. Steele (1998b), Warming of the Arctic Ocean by a strengthened Atlantic inflow: Model results, Geophys. Res. Lett., 25, 1745 - 1748.
    • Zhang, J., D. Rothrock, and M. Steele (2000), Recent changes in Arctic sea ice: The interplay between ice dynamics and thermodynamics, J. Clim., 13, 3099 - 3114.
    • Zhang, X., and J. E. Walsh (2006), Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations, J. Clim., 19, 1730 - 1747.
    • D. L. Feltham, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK. () S. W. Laxon, Centre for Polar Observation and Modelling, Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK. () P. A. Miller, Department of Physical Geography and Ecosystems Analysis, Lund University, S-22364, Sweden. ()
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article