Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Novak, R.L.; Metaxas, P.J.; Jamet, J.P.; Weil, R.; Ferre, J.; Mougin, A.; Rohart, S.; Stamps, R.; Zermatten, P.J.; Gaudin, G.; Baltz, V.; Rodmacq, B. (2015)
Publisher: IOP Publishing Ltd.
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: Condensed Matter::Materials Science
Magneto-optical microscopy and magnetometry have been used to study\ud 19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film\ud 20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly\ud 21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially\ud 22 periodic pinning potential for domain walls propagating through the continuous\ud 23 magnetic film. When reversing the applied field with respect to the static nanodot\ud 24 array magnetization orientation, strong asymmetries in the wall velocity and switching\ud 25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is\ud 26 characterized by a large bias field of dipolar origin which is linked to the wall velocity\ud 27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields\ud 28 where the domains become round and compact. A field-polarity-controlled transition\ud 29 from dendritic to compact faceted domain structures is also seen at low field and a\ud 30 model is proposed to interpret the transition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. J. Metaxas, P.-J. Zermatten, J.-P. Jamet, J. Ferr´e, G. Gaudin, B. Rodmacq, A. Schuhl, and R. L. Stamps. Periodic magnetic domain wall pinning in an ultrathin film with perpendicular anisotropy generated by the stray magnetic field of a ferromagnetic nanodot array. Appl. Phys. Lett., 94(13):132504, 2009.
    • [2] P. J. Metaxas, P.-J. Zermatten, R. L. Novak, S. Rohart, J.-P. Jamet, R. Weil, J. Ferr´e, A. Mougin, R. L. Stamps, G. Gaudin, V. Baltz, and B. Rodmacq. Spatially periodic domain wall pinning potentials: Asymmetric pinning and dipolar biasing. J. Appl. Phys., 113(7):073906, 2013.
    • [3] A. M. Ettouhami and L Radzihovsky. Velocity-force characteristics of an interface driven through a periodic potential. Phys. Rev. B, 67:115412, Mar 2003.
    • [4] S. Lemerle, J. Ferr´e, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal. Domain Wall Creep in an Ising Ultrathin Magnetic Film. Phys. Rev. Lett., 80:849-852, Jan 1998.
    • [5] P. J. Metaxas, J.-P. Jamet, A. Mougin, M. Cormier, J. Ferr´e, V. Baltz, B. Rodmacq, B. Dieny, and R. L. Stamps. Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt/Co/Pt Films with Perpendicular Anisotropy. Phys. Rev. Lett., 99:217208, Nov 2007.
    • [6] A Fraile Rodr´ıguez, L J Heyderman, F Nolting, A Hoffmannand J E Pearson, L M Doeswijk, M A F van den Boogaart, and J Brugger. Permalloy thin films exchange coupled to arrays of cobalt islands. Appl. Phys. Lett., 89:142508, 2006.
    • [7] G Rodr´ıguez-Rodr´ıguez, A P´erez-Junquera, M V´elez, J V Anguita, J I Mart´ın, H Rubio, and J M Alameda. MFM observations of domain wall creep and pinning effects in amorphous CoxSi1−x films with diluted arrays of antidots. J. Phys. D: Appl. Phys., 40:3051-3055, 2007.
    • [8] A. P´erez-Junquera, V. I. Marconi, A. B. Kolton, L. M. A´lvarez-Prado, Y. Souche, A. Alija, M. V´elez, J. V. Anguita, J. M. Alameda, J. I. Mart´ın, and J. M. R. Parrondo. Crossed-Ratchet Effects for Magnetic Domain Wall Motion. Phys. Rev. Lett., 100(3):037203, 2008.
    • 477 [9] Lili Ji, A. Orlov, G.H. Bernstein, W. Porod, and G. Csaba. Domain-wall trapping and control on
    • 478 submicron magnetic wire by localized field. In 9th IEEE Conference on Nanotechnology, 2009.
    • 479 IEEE-NANO 2009., pages 758-762, 2009.
    • 480 [10] L. O'Brien, D. Petit, E. R. Lewis, R. P. Cowburn, D. E. Read, J. Sampaio, H. T. Zeng, and A.-V.
    • 481 Jausovec. Tunable Remote Pinning of Domain Walls in Magnetic Nanowires. Phys. Rev. Lett.,
    • 482 106:087204, Feb 2011.
    • 483 [11] Lili Ji, Alexei Orlov, Gary H Bernstein, Wolfgang Porod, and Gyorgy Csaba. Domain-wall trapping
    • 484 and control on submicron magnetic wire by localized field. In Nanotechnology, 2009. IEEE-
    • 485 NANO 2009. 9th IEEE Conference on, pages 758-762. IEEE, 2009.
    • 486 [12] Jeroen H. Franken, Mark A. J. van der Heijden, Tim H. Ellis, Reinoud Lavrijsen, Carsten Daniels,
    • 487 Damien McGrouther, Henk J. M. Swagten, and Bert Koopmans. Beam-Induced Fe Nanopillars
    • 488 as Tunable Domain-Wall Pinning Sites. Advanced Functional Materials, 24:3508-3514, 2014.
    • 489 [13] R. A. van Mourik, C. T. Rettner, B. Koopmans, and S. S. P. Parkin. Control of domain wall
    • 490 pinning by switchable nanomagnet state. J. Appl. Phys., 115(17):17D503, May 2014.
    • 491 [14] M. Gottwald, M. Hehn, D. Lacour, T. Hauet, F. Montaigne, S. Mangin, P. Fischer, M.-Y. Im, and
    • 492 A. Berger. Asymmetric magnetization reversal in dipolarly coupled spin valve structures with
    • 493 perpendicular magnetic anisotropy. Phys. Rev. B, 85:064403, Feb 2012.
    • 494 [15] J. Nogu´es and I. K. Schuller. Exchange bias. J. Magn. Magn. Mater., 192:203, 1999.
    • 495 [16] R. L. Stamps. Mechanisms for exchange bias. J. Phys. D: Appl. Phys, 33:R247, 2000.
    • 496 [17] M Kiwi. Exchange bias theory. J. Magn. Magn. Mater., 234:584, 2001.
    • 497 [18] M D Stiles and R D McMichael. Coercivity in exchange-bias layers. Phys. Rev. B, 63:064405,
    • 499 [19] Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas. Magnetic Domain-Wall Racetrack
    • 500 Memory. Science, 320:190-194, 2008.
    • 501 [20] Tetsuhiro Suzuki, S. Fukami, K. Nagahara, Norikazu Ohshima, and N. Ishiwata. Evaluation of
    • 502 Scalability for Current-Driven Domain Wall Motion in a Co/Ni Multilayer Strip for Memory
    • 503 Applications. IEEE Trans. Mag., 45(10):3776-3779, 2009.
    • 504 [21] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn. Magnetic
    • 505 Domain-Wall Logic. Science, 309:1688-1692, 2005.
    • 506 [22] J. Moritz, F. Garcia, J. C. Toussaint, B. Dieny, and J.-P. Nozi`eres. Orange peel coupling in
    • 507 multilayers with perpendicular magnetic anisotropy:Application to (Co/Pt)-based exchange-
    • 508 biased spin-valves. Europhys. Lett., 65:123, 2004.
    • 509 [23] A. Lyberatos, J. Earl, and R. W. Chantrell. Model of thermally activated magnetization reversal
    • 510 in thin films of amorphous rare-earth-transition-metal alloys. Phys. Rev. B, 53:5493-5504, Mar
    • 512 [24] A Lyberatos. Monte Carlo models of the magnetization reversal in thin films with strong
    • 513 perpendicular anisotropy. Journal of Physics D: Applied Physics, 33(13):R117, 2000.
    • 514 [25] Hong Ji and Mark O. Robbins. Transition from compact to self-similar growth in disordered
    • 515 systems: Fluid invasion and magnetic-domain growth. Phys. Rev. A, 44:2538, 1991.
    • 516 [26] Sug-Bong Choe and Sung-Chul Shin. Phase diagram of three contrasting magnetization reversal
    • 517 phases in uniaxial ferromagnetic thin films. Applied Physics Letters, 80(10):1791-1793, 2002.
    • 518 [27] J. Ferr´e. In B. Hillebrands and K. Ounadjela, editors, Spin Dynamics in Confined Magnetic
    • 519 Structures I. Springer, 2002.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • ARC | Magnetic biosensing: develo...

Cite this article