LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rae, I. J.; Watt, Clare E. J.; Mann, I. R.; Murphy, K. R.; Samson, J. C.; Kabin, K.; Angelopoulos, V. (2010)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Physics::Geophysics, Physics::Plasma Physics
We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Akasofu, S. I. (1964), The development of the auroral substorm, Planet. Space Sci., 12, 273-282.
    • Akasofu, S. I. (1977), Magnetospheric substorms, Q. J. R. Astron. Soc., 18, 170-187.
    • Angelopoulos, V. (2008), The THEMIS mission, Space Sci. Rev., 141, 5-34.
    • Angelopoulos, V., et al. (2008a), First results from the THEMIS mission, Space Sci. Rev., 141, 453-476.
    • Angelopoulos, V., et al. (2008b), Tail reconnection triggering substorm onset, Science, 321(5891), 931-935, doi:10.1126/science.1160495.
    • Angelopoulos, V., et al. (2009), Response to comment on “Tail reconnection triggering substorm onset,” Science, 324(5933), 1391‐c., doi:10.1126/science.1168045.
    • Arnoldy, R. L., R. Rajashekar, L. J. Cahill, M. J. Engebretson, T. J. Rosenberg, and S. B. Mende (1987), Simultaneous measurement of aurora‐related, irregular magnetic pulsations at northern and southern high latitudes, J. Geophys. Res., 92(A11), 12,221-12,232, doi:10.1029/ JA092iA11p12221.
    • Bosinger, T. (1989), On the Spectral Index of the Pi1b Power Spectrum, Ann. Geophys., 7, 375-386.
    • Bosinger, T., and A. G. Yahnin (1987), Pi1b‐type magnetic pulsation as a high time resolution monitor of substorm development, Ann. Geophys., 5, 231-237.
    • Cheng, C. Z. (2004), Physics of substorm growth phase, onset, and dipolarization, Space Sci. Rev., 113, 207-270.
    • Coppi, B., G. Laval, and R. Pellat (1966), Dynamics of geomagnetic tail, Phys. Rev. Lett., 16, 1207.
    • Crabtree, C., W. Horton, H. V. Wong, and J. W. Van Dam (2003), Bounce‐averaged stability of compressional modes in geotail flux tubes, J. Geophys. Res., 108(A2), 1084, doi:10.1029/2002JA009555.
    • Donovan, E., et al. (2008), Simultaneous THEMIS in situ and auroral observations of a small substorm, Geophys. Res. Lett., 35, L17S18, doi:10.1029/2008GL033794.
    • Donovan, E. F., S. Mende, B. Jackel, M. Syrjasuo, M. Meurant, I. Voronkov, H. U. Frey, V. Angelopoulos, and M. Connors (2007), The azimuthal evolution of the substorm expansive phase onset, in Proceedings of the International Conference on Substorms, 8.
    • Erickson, G. M., N. C. Maynard, W. J. Burke, G. R. Wilson, and M. A. Heinemann (2000), Electromagnetics of substorm onsets in the neargeosynchronous plasma sheet, J. Geophys. Res., 105(A11), 25,265- 25,290, doi:10.1029/1999JA000424.
    • Frey, H. U., and S. B. Mende (2007), Substorm onsets as observed by IMAGE‐FUV, in Proceedings of the International Conference of Substorms, 8.
    • Friedrich, E., J. C. Samson, I. Voronkov, and G. Rostoker (2001), Dynamics of the substorm expansive phase, J. Geophys. Res., 106(A7), 13,145- 13,163, doi:10.1029/2000JA000292.
    • Heppner, J. P. (1958), A study of the relationships between the aurora borealis and the geomagnetic disturbances caused by electric currents in the ionosphere, DR135, Defence Research Board of Canada, Ottawa, Ontario, Canada.
    • Hones, E. W. (1976), Observations in Earth's magnetotail relating to magnetic merging, Sol. Phys., 47, 101-113.
    • Horton, W., H. V. Wong, J. W. Van Dam, and C. Crabtree (2001), Stability properties of high‐pressure geotail flux tubes, J. Geophys. Res., 106(A9), 18,803-18,822, doi:10.1029/2000JA000415.
    • Jacobs, J. A., S. Matsushita, Y. Kato, and V. A. Troitskaya (1964), Classification of geomagnetic micropulsations, J. Geophys. Res., 69, 180, doi:10.1029/JZ069i001p00180.
    • Kabin, K., R. Rankin, I. R. Mann, A. W. Degeling, and R. Marchand (2007), Polarization properties of standing shear Alfven waves in nonaxisymmetric background magnetic fields, Ann. Geophys., 25, 815-822.
    • Kepko, L., E. Spanswick, V. Angelopoulos, E. Donovan, J. McFadden, K.‐H. Glassmeier, J. Raeder, and H. J. Singer (2009), Equatorward moving auroral signatures of a flow burst observed prior to auroral onset, Geophys. Res. Lett., 36, L24104, doi:10.1029/2009GL041476.
    • Lee, L. C., L. Zhang, A. Otto, G. S. Choe, and H. J. Cai (1998), Entropy antidiffusion instability and formation of a thin current sheet during geomagnetic substorms, J. Geophys. Res., 103(A12), 29,419-29,428, doi:10.1029/97JA02141.
    • Lessard, M. R., E. J. Lund, S. L. Jones, R. L. Arnoldy, J. L. Posch, M. J. Engebretson, and K. Hayashi (2006), Nature of Pi1B pulsations as inferred from ground and satellite observations, Geophys. Res. Lett., 33, L14108, doi:10.1029/2006GL026411.
    • Liang, J., E. F. Donovan, W. W. Liu, B. Jackel, M. Syrjasuo, S. B. Mende, H. U. Frey, V. Angelopoulos, and M. Connors (2008), Intensification of preexisting auroral arc at substorm expansion phase onset: Wave‐like disruption during the first tens of seconds, Geophys. Res. Lett., 35, L17S19, doi:10.1029/2008GL033666.
    • Lin, N., H. U. Frey, S. B. Mende, F. S. Mozer, R. L. Lysak, Y. Song, and V. Angelopoulos (2009), Statistical study of substorm timing sequence, J. Geophys. Res., 114, A12204, doi:10.1029/2009JA014381.
    • Lui, A. T. Y. (1991), A synthesis of magnetospheric substorm models, J. Geophys. Res., 96(A2), 1849-1856, doi:10.1029/90JA02430.
    • Lui, A. T. Y. (2004), Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev., 113, 127-206.
    • Lui, A. T. Y., C. L. Chang, A. Mankofsky, H. K. Wong, and D. Winske (1991), A cross‐field current instability for substorm expansions, J. Geophys. Res., 96(A7), 11,389-11,401, doi:10.1029/91JA00892.
    • Lyons, L. R., Y. Nishimura, Y. Shi, S. Zou, H.‐J. Kim, V. Angelopoulos, C. Heinselman, M. J. Nicolls, and K.‐H. Fornacon (2010), Substorm triggering by new plasma intrusion: Incoherent‐scatter radar observations, J. Geophys. Res., 115, A07223, doi:10.1029/2009JA015168.
    • Mann, I. R. (1998), An MHD model for driven high m field line resonances, Geophys. Res. Lett., 25(9), 1515-1518, doi:10.1029/98GL51092.
    • Mann, I. R., et al. (2008), The upgraded CARISMA magnetometer array in the THEMIS era, Space Sci. Rev., 141, 413-451, doi:10.1007/s11214- 008-9457-6.
    • Maynard, N. C., G. M. Erickson, W. J. Burke, and G. R. Wilson (1998), Magnetospheric electric fields during substorm onset and expansion phases, in Substorms, 4, edited by S. Kokubun and Y. Kamide, pp. 605- 610, Kluwer Acad., Dordrecht.
    • Maynard, N. C., et al. (1997), Geotail measurements compared with the motions of high‐latitude auroral boundaries during two substorms, J. Geophys. Res., 102(A5), 9553-9572, doi:10.1029/97JA00307.
    • Maynard, N. C., W. J. Burke, E. M. Basinska, G. M. Erickson, W. J. Hughes, H. J. Singer, A. G. Yahnin, D. A. Hardy, and F. S. Mozer (1996a), Dynamics of the inner magnetosphere near times of substorm onsets, J. Geophys. Res., 101(A4), 7705-7736, doi:10.1029/95JA03856.
    • Maynard, N. C., W. J. Burke, G. M. Erickson, E. M. Basinska, and A. G. Yahnin (1996b), Magnetosphere‐ionosphere coupling during substorm onset, in Third International Conference on Substorms (ICS‐3), Eur. Space Agency Spec. Publ., ESA SP389, pp. 301-305, Noordwijk, Netherlands.
    • Mende, S. B., S. E. Harris, H. U. Frey, V. Angelopoulos, C. T. Russell, E. Donovan, B. Jackel, M. Greffen, and L.M. Peticolas (2008), The THEMIS array of ground‐based observatories for the study of auroral substorms, Space Sci. Rev., doi: 10.1007/s11214-008-9380.
    • Milling, D. K., I. J. Rae, I. R. Mann, K. R. Murphy, A. Kale, C. T. Russell, V. Angelopoulos, and S. Mende (2008), Ionospheric localisation and expansion of long‐period Pi1 pulsations at substorm onset, Geophys. Res. Lett., 35, L17S20, doi:10.1029/2008GL033672.
    • Murphy, K. R., I. J. Rae, I. R. Mann, D. K. Milling, C. E. J. Watt, L. Ozeke, H. U. Frey, V. Angelopoulos, and C. T. Russell (2009a), Wavelet‐based ULF wave diagnosis of substorm expansion phase onset, J. Geophys. Res., 114, A00C16, doi:10.1029/2008JA013548.
    • Murphy, K. R., I. J. Rae, I. R. Mann, A. P. Walsh, D. K. Milling, C. E. J. Watt, L. Ozeke, H. U. Frey, V. Angelopoulos, and C. T. Russell (2009b), Reply to comment by K. Liou and Y.‐L. Zhang on “Wavelet‐based ULF wave diagnosis of substorm expansion phase onset,” J. Geophys. Res., 114, A10207, doi:10.1029/2009JA014351.
    • Nishimura, Y., L. Lyons, S. Zou, V. Angelopoulos, and S. Mende (2010), Substorm triggering by new plasma intrusion: THEMIS all‐sky imager observations, J. Geophys. Res., 115, A07222, doi:10.1029/ 2009JA015166.
    • Pahud, D. M., I. J. Rae, I. R. Mann, K. R. Murphy, and V. Amalraj (2009), Ground‐based Pc5 ULF wave power: Solar wind speed and MLT dependence, J. Atmos. Sol. Terr. Phys., 71, 1082-1092, doi:10.1016/j. jastp.2008.12.004.
    • Perraut, S., O. Le Contel, A. Roux, and A. Pedersen (2000), Current‐driven electromagnetic ion cyclotron instability at substorm onset, J. Geophys. Res., 105(A9), 21,097-21,107, doi:10.1029/2000JA900059.
    • Peticolas, L. M., N. Craig, S. F. Odenwald A. Walker, C. T. Russell, V. Angelopoulos, C. Willard, M. B. Larson, W. A. Hiscock, J. M. Stoke, and M. B. Moldwin (2008), The Time History of Events and Macroscale Interactions during Substorms (THEMIS) Education and Outreach (E/PO) Program, Space Sci. Rev., 141(1-4), 557-583, doi:10.1007/978- 0-387-89820-9_23.
    • Rae, I. J., et al. (2009a), Near‐Earth initiation of a terrestrial substorm, J. Geophys. Res., 114, A07220, doi:10.1029/2008JA013771.
    • Rae, I. J., et al. (2009b), Timing and localization of ionospheric signatures associated with substorm expansion phase onset, J. Geophys. Res., 114, A00C09, doi:10.1029/2008JA013559.
    • Rostoker, G., and T. Eastman (1987), A boundary‐layer model for magnetospheric substorms, J. Geophys. Res., 92(A11), 12,187-12,201, doi:10.1029/JA092iA11p12187.
    • Roux, A., S. Perraut, P. Robert, A. Morane, A. Pedersen, A. Korth, G. Kremser, B. Aparicio, D. Rodgers, and R. Pellinen (1991), Plasma sheet instability related to the westward traveling surge, J. Geophys. Res., 96(A10), 17,697-17,714, doi:10.1029/91JA01106.
    • Russell, C. T., P. J. Chi, D. J. Dearborn, Y. S. Ge, B. Kuo‐Tiong, J. D. Means, D. R. Pierce, K. M. Rowe, and R. C. Snare (2008), THEMIS ground‐based magnetometers, Space Sci. Rev., 141, 389-412.
    • Sakaguchi, K., K. Shiokawa, A. Ieda, R. Nomura, A. Nakajima, M. Greffen, E. Donovan, I. R. Mann, H. Kim, and M. Lessard (2009), Fine structures and dynamics in auroral initial brightening at substorm onsets, Ann. Geophys., 27, 623-630.
    • Semeter, J., and E. M. Blixt (2006), Evidence for Alfven wave dispersion identified in high‐resolution auroral imagery, Geophys. Res. Lett., 33, L13106, doi:10.1029/2006GL026274.
    • Semeter, J., M. Zettergren, M. Diaz, and S. Mende (2008), Wave dispersion and the discrete aurora: New constraints derived from high‐speed imagery, J. Geophys. Res., 113, A12208, doi:10.1029/2008JA013122.
    • Sibeck, D. G., and V. Angelopoulos (2008), THEMIS science objectives and mission phases, Space Sci. Rev., 141, 35-59.
    • Song, Y., and R. L. Lysak (2001), Towards a new paradigm: From a quasisteady description to a dynamical description of the magnetosphere, Space Sci. Rev., 95, 273-292.
    • Uritsky, V. M., J. Liang, E. Donovan, E. Spanswick, D. Knudsen, W. Liu, J. Bonnell, and K. H. Glassmeier (2009), Longitudinally propagating arc wave in the pre‐onset optical aurora, Geophys. Res. Lett., 36, L21103, doi:10.1029/2009GL040777.
    • Voronkov, I., R. Rankin, P. Frycz, V. T. Tikhonchuk, and J. C. Samson (1997), Coupling of shear flow and pressure gradient instabilities, J. Geophys. Res., 102(A5), 9639-9650, doi:10.1029/97JA00386.
    • Wang, C.‐P., L. R. Lyons, J. M. Weygand, T. Nagai, and R. W. McEntire (2006), Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic field Bz conditions, J. Geophys. Res., 111, A04215, doi:10.1029/2005JA011545.
    • Watt, C. E. J., and R. Rankin (2007), Electron acceleration due to inertial Alfven waves in a non‐Maxwellian plasma, J. Geophys. Res., 112, A04214, doi:10.1029/2006JA011907.
    • Watt, C. E. J., and R. Rankin (2009), Electron trapping in shear Alfven waves that power the aurora, Phys. Rev. Lett., 102, 045002.
    • Watt, C. E. J., R. Rankin, I. J. Rae, and D. M. Wright (2005), Self‐consistent electron acceleration due to inertial Alfven wave pulses, J. Geophys. Res., 110, A10S07, doi:10.1029/2004JA010877.
    • Yoon, P. H., A. T. Y. Lui, and C. L. Chang (1994), Lower‐hybrid‐drift instability operative in the geomagnetic tail, Phys. Plasmas, 1, 3033- 3043.
    • Yoon, P. H., J. F. Drake, and A. T. Y. Lui (1996), Theory and simulation of Kelvin‐Helmholtz instability in the geomagnetic tail, J. Geophys. Res., 101(A12), 27,327-27,339, doi:10.1029/96JA02752.
    • Zhu, Z. W., and R. M. Winglee (1996), Tearing instability, flux ropes, and the kinetic current sheet kink instability in the Earth's magnetotail: A three‐dimensional perspective from particle simulations, J. Geophys. Res., 101(A3), 4885-4897, doi:10.1029/95JA03144. V. Angelopoulos, Institute of Geophysics and Planetary Physics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095‐ 1567, USA.
    • Watt, Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada. ()
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article