LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McKenna, Keith P. (2016)
Languages: English
Types: Article
Subjects:
We present a first principles investigation into the electronic properties of an extended interface between rutile TiO2 and Cu. We show that owing to the highly polarizable nature of TiO2, the interface is unstable to the spontaneous formation of small electron polarons at the interface. The resulting dipole leads to an increase in the conduction band offset by 0.4 eV and the presence of a band of occupied states related to Ti d states 1.4 eV below the Fermi energy. This effect should be expected more generally at interfaces between highly polarizable oxides and metals but is missed by standard first principles approaches. Given the ubiquitous nature of such interfaces, this previously overlooked effect may have important implications for diverse applications across science and technology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] T. Holstein, Ann. Phys. 8, 343 (1959).
    • [2] A. M. Stoneham, IEEE Trans. Dielectr. Electr. Insul. 4, 604 (1997).
    • [3] S. Yoon, H. L. Liu, G. Schollerer, S. L. Cooper, P. D. Han, D. A. Payne, S.-W. Cheong, and Z. Fisk, Phys. Rev. B 58, 2795 (1998).
    • [4] C. P. Adams, J. W. Lynn, Y. M. Mukovskii, A. A. Arsenov, and D. A. Shulyatev, Phys. Rev. Lett. 85, 3954 (2000).
    • [5] O. F. Schirmer, J. Phys.: Condens. Matter 18, R667 (2006).
    • [6] N. A. Deskins and M. Dupuis, Phys. Rev. B 75, 195212 (2007).
    • [7] S. Wright and R. C. Barklie, J. Appl. Phys. 106, 103917 (2009).
    • [8] K. P. McKenna, M. J. Wolf, A. L. Shluger, S. Lany, and A. Zunger, Phys. Rev. Lett. 108, 116403 (2012).
    • [9] M. J. Wolf, K. P. McKenna, and A. L. Shluger, J. Phys. Chem. C 116, 25888 (2012).
    • [10] S. Yang, A. T. Brant, N. C. Giles, and L. E. Halliburton, Phys. Rev. B 87, 125201 (2013).
    • [11] M. Setvin, C. Franchini, X. Hao, M. Schmid, A. Janotti, M. Kaltak, C. G. Van de Walle, G. Kresse, and U. Diebold, Phys. Rev. Lett. 113, 086402 (2014).
    • [12] H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wo¨ll, Sci. Rep. 4, 3808 (2014).
    • [13] A. Janotti, J. B. Varley, M. Choi, and C. G. Van de Walle, Phys. Rev. B 90, 085202 (2014).
    • [14] Z. Wang, S. McKeown Walker, A. Tamai, Y. Wang, Z. Ristic, F. Y. Bruno, A. de la Torre, S. Ricco, N. C. Plumb, M. Shi et al., Nat. Mater. 15, 835 (2016).
    • [15] K. Schierbaum, U. Kirner, J. Geiger, and W. Go¨pel, Sens. Actuators, B 4, 87 (1991).
    • [16] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, and R. S. Williams, J. Appl. Phys. 106, 074508 (2009).
    • [17] R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
    • [18] B. O'Regan and M. Gra¨tzel, Nature (London) 353, 737 (1991).
    • [19] L. M. Peter, J. Phys. Chem. Lett. 2, 1861 (2011).
    • [20] A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).
    • [21] P. Dea´k, B. Aradi, and T. Frauenheim, Phys. Rev. B 92, 045204 (2015).
    • [22] K. P. McKenna and D. M. Ramo, Phys. Rev. B 92, 205124 (2015).
    • [23] S. Lany and A. Zunger, Phys. Rev. B 80, 085202 (2009).
    • [24] B. J. Morgan, D. O. Scanlon, and G. W. Watson, J. Mater. Chem. 19, 5175 (2009).
    • [25] A. J. E. Rettie, W. D. Chemelewski, D. Emin, and C. B. Mullins, J. Phys. Chem. Lett. 7, 471 (2016).
    • [26] C. Di Valentin and A. Selloni, J. Phys. Chem. Lett. 2, 2223 (2011).
    • [27] G. N. Vayssilov, Y. Lykhach, A. Migani, T. Staudt, G. P. Petrova, N. Tsud, T. Ska´la, A. Bruix, F. Illas, K. C. Prince et al., Nat. Mater. 10, 310 (2011).
    • [28] Z. Novotny´, G. Argentero, Z. Wang, M. Schmid, U. Diebold, and G. S. Parkinson, Phys. Rev. Lett. 108, 216103 (2012).
    • [29] P. Luches, L. Giordano, V. Grillo, G. C. Gazzadi, S. Prada, M. Campanini, G. Bertoni, C. Magen, F. Pagliuca, G. Pacchioni et al., Adv. Mater. Interfaces 2, 1500375 (2015).
    • [30] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
    • [31] L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 045414 (2006).
    • [32] J. Robertson, Phys. Status Solidi 207, 261 (2010).
    • [33] J. Goniakowski and C. Noguera, Interface Sci. 12, 93 (2004).
    • [34] A. A. A. Demkov, Phys. Rev. B 74, 085310 (2006).
    • [35] T. Tamura, S. Ishibashi, K. Terakura, and H. Weng, Phys. Rev. B 80, 195302 (2009).
    • [36] S. R. Bradley, K. P. McKenna, and A. L. Shluger, Microelectron. Eng. 109, 346 (2013).
    • [37] S. Ling, M. B. Watkins, and A. L. Shluger, J. Phys. Chem. C 117, 5075 (2013).
    • [38] B. J. Morgan and G. W. Watson, J. Phys. Chem. C 113, 7322 (2009).
    • [39] P. Dea´k, B. Aradi, and T. Frauenheim, Phys. Rev. B 86, 195206 (2012).
    • [40] S. K. Wallace and K. P. McKenna, Adv. Mater. Interfaces 1, 1400078 (2014).
    • [41] S. K. Wallace and K. P. McKenna, J. Phys. Chem. C 119, 1913 (2015).
    • [42] N. A. Deskins, R. Rousseau, and M. Dupuis, J. Phys. Chem. C 113, 14583 (2009).
    • [43] N. A. Deskins, R. Rousseau, and M. Dupuis, J. Phys. Chem. C 115, 7562 (2011).
    • [44] M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
    • [45] S. Lany and A. Zunger, Phys. Rev. B 81, 205209 (2010).
    • [46] G. Kresse and J. Furthmu¨ller, Phys. Rev. B 54, 11169 (1996).
    • [47] G. Kresse and J. Furthmu¨ller, Comput. Mater. Sci. 6, 15 (1996).
    • [48] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    • [49] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
    • [50] B. J. Morgan and G. W. Watson, Surf. Sci. 601, 5034 (2007).
    • [51] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
    • [52] J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
    • [53] G. Henkelman, A. Arnaldsson, and H. Jo´nsson, Comput. Mater. Sci. 36, 354 (2006).
    • [54] J. P. Allen and G. W. Watson, Phys. Chem. Chem. Phys. 16, 21016 (2014).
    • [55] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.94.155147 for spin-resolved electronic densities of states calculated at the DFT+U and HSE levels of theory.
    • [56] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
    • [57] P. O. Gartland, S. Berge, and B. J. Slagsvold, Phys. Rev. Lett. 28, 738 (1972).
    • [58] L. Kavan, M. Gra¨tzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996).
    • [59] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin et al., Nat. Mater. 12, 798 (2013).
    • [60] A. S. Wo¨rz, U. Heiz, F. Cinquini, and G. Pacchioni, J. Phys. Chem. B 109, 18418 (2005).
    • [61] M. Sterrer, E. Fischbach, T. Risse, and H.-J. Freund, Phys. Rev. Lett. 94, 186101 (2005).
    • [62] M. Yulikov, M. Sterrer, T. Risse, and H.-J. Freund, Surf. Sci. 603, 1622 (2009).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article