LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Braun, Sebastian
Languages: English
Types: Doctoral thesis
Subjects: QD, QH301
Anions including nucleic acids and lipids have been found to promote amyloid formation in diseases including neurodegenerative conditions such as Alzheimer’s and Creutzfeldt-Jakob disease. However, the direct effects of these close charge-based interactions are not well understood. It is unclear what effect amyloidogenic peptides would have on nucleic acid integrity. Similarly, the direct effects of amyloidogenic polypeptides on liposomes are not well understood. Here I have used a simplified system of short basic peptides with alternating hydrophobic and hydrophilic amino acid residues to study their interactions with polyanionic nucleic acids and fatty acid liposomes. Employing biophysical techniques including X-ray fibre diffraction, circular dichroism spectroscopy and electron microscopy I showed that the polymerized charges of nucleic acids and pseudo-polymerised charges of lipid membranes concentrated and enhanced the formation of amyloid from short basic peptides, many of which would not otherwise form fibres under the conditions explored. In turn, the same peptides bound nucleic acids and promoted their hybridisation at concentrations below their solution Kd, as shown by time-resolved FRET studies. The mutual interactions between peptides and nucleic acids lead to the formation of amyloid nucleic acid (ANA) fibres, which in addition to their importance in disease might have a potential in nano-engineering of biomaterials.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 9.4.   Instrument  Response  Function  of  the  FRET  setup. ....................................................... x liv   9.5.   Additional  STVIIE  +  Oligo  E  Time  Courses. ........................................................................ x lv   9.6.   Overlay  Comparisons  of  Fibre  Diffraction  Patterns . ..................................................... x lvi   9.7.   Fatty  acid  spectra . .......................................................................................................................... l iii   9.8.   TVQFHMH  CD  Spectra. ................................................................................................................. l iv   9.9.   Hypothesis:  The  Amyloid-­‐Nucleic  Acid  (ANA)  World    as  Transition  from  the   RNA  World . ......................................................................................................................................................  lv  
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
  • No similar publications.

Share - Bookmark

Cite this article