LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Bo
Languages: English
Types: Doctoral thesis
Subjects: Q1
Both excitable and non-excitable cells possess plasma membrane ion channels and evidence has accumulated over the last 30 or so years that these channels perhaps play key roles in the cell life and death. This Thesis investigated the characteristics and putative functions of one class of potassium channel, the BK channel in osteoblast-like cells and primary osteoblasts from human, rat and mouse. The properties and functions were defined in vitro using a combination of patch-clamp, reverse transcription-polymerase chain reaction (RT-PCR) and functional assays for cell growth and mineralisation. RT-PCR showed the presence of KCNMA1, KCNMB1, KCNMB2, KCNMB3 and KCNMB4, the gene for BK channel α, β1, β2, β3 and β4 subunits respectively. The channel was voltage-dependent with a mean unitary conductance of 315 pS in cell-attached patches, a conductance of 124 pS in excised outside-out and 151 pS in inside-out patches. The channel was blocked by TEA (0.3 mM), TBuA (1 mM), TPeA (1-10 μM), THeA (1-3 μM), tetrandrine (5-30 μM) and paxilline (10 μM) and was activated by isopimaric acid (20 μM). Notably iberiotoxin (IbTX) (90 nM) only blocked a proportion of the channels tested (2/5). Osteoblast-like MG63 cell number changed in response to BK channel modulators. It increased significantly with TEA and tetrandrine at low concentrations (1 mM, 3 μM respectively), and reduced at high concentrations (>10 mM, >10 μM respectively). It was not affected by IbTX (20-300 nM) or slotoxin (300 nM). The increase in cell number by TEA was blocked by isopimaric acid. In addition, TPeA and THeA caused a decrease of osteoblast-like SaOS2 cell mineralisation at the concentrations (3 and 0.3 μM, respectively) increased MG63 cell numbers. The BK channel has a distinctive pharmacology and represents a new target for therapeutic strategies in modulating osteoblast proliferation.

Share - Bookmark

Cite this article