Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Goodenough, Anne E; Stallwood, Bethan (2010)
Publisher: Springer
Languages: English
Types: Article
Subjects: QR
Although interest in the relationship between birds and microorganisms is increasing, few studies have compared nest microbial assemblages in wild passerines to determine variation within and between species. Culturing microorganisms from blue tit (Cyanistes caeruleus) and great tit (Parus major) nests from the same study site demonstrated diverse microbial communities with 32 bacterial and 13 fungal species being isolated. Dominant bacteria were Pseudomonas fluorescens, Pseudomonas putida, and Staphylococcus hyicus. Also common in the nests were the keratinolytic bacteria Pseudomonas stutzeri and Bacillus subtilis. Dominant fungi were Cladosporium herbarum and Epicoccum purpurascens. Aspergillus flavous, Microsporum gallinae, and Candida albicans (causative agents of avian aspergillosis, favus, and candidiasis, respectively) were present in 30%, 25%, and 10% of nests, respectively. Although there were no differences in nest mass or materials, bacterial (but not fungal) loads were significantly higher in blue tit nests. Microbial species also differed interspecifically. As regards potential pathogens, the prevalence of Enterobacter cloacae was higher in blue tit nests, while Pseudomonas aeruginosa—present in 30% of blue tit nests—was absent from great tit nests. The allergenic fungus Cladosporium cladosporioides was both more prevalent and abundant in great tit nests. Using discriminant function analysis (DFA), nests were classified to avian species with 100% accuracy using the complete microbial community. Partial DFA models were created using a reduced number of variables and compared using Akaike’s information criterion on the basis of model fit and parsimony. The best models classified unknown nests with 72.5–95% accuracy using a small subset of microbes (n = 1–8), which always included Pseudomonas agarici. This suggests that despite substantial intraspecific variation in nest microflora, there are significant interspecific differences—both in terms of individual microbes and the overall microbial community—even when host species are closely related, ecologically similar, sympatric, and construct very similar nests.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Aguirre, A.A., Quan, T.J., Cook, R.S. and McLean, R.G. (1992) Cloacal flora isolated from wild blackbellied whistling ducks (Dendrocygna autumnalis) in Laguna La Nacha, Mexico. Avian Diseases, 36, 459- 462.
    • 2. Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
    • 3. Amann, R.I., Ludwig, W. and Schleifer, K-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143-169.
    • 4. Berger, S., Disko, R. and Gwinner, H. (2003) Bacteria in starling nests. Journal of Ornithology, 144, 317- 322.
    • 5. Bisson, I-A., Marra, P.P., Burtt, E.H. Jr, Sikaroodi, M. and Gillevet, P.M. (2007) A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microbial Ecology, 54, 65-81.
    • 6. Blanco, G., Lemus, J.A. and Grange, J. (2006) Faecal bacteria associated with different diets of wintering red kites: influence of livestock carcass dumps in microflora alteration and pathogen acquisition. Journal of Applied Ecology, 43, 990-998.
    • 7. Brittingham, M.C., Temple, S.A. and Duncan, R.M. (1998) A survey of the prevalence of selected bacteria in wild birds. Journal of Wildlife Diseases, 24, 299-307.
    • 8. Bruce, J. and Drysdale, E.M. (1993) Trans-shell transmission. In: Microbiology of the Avian Egg (eds Board, R.G and Fuller, R.). New York: Springer Publishing.
    • 9. Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference: a Practice Information-Theoretic Approach. Springer Verlag, New York.
    • 10. Burtt, E.H. Jr and Ichida, J.M. (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk, 166, 364-372.
    • 11. Burtt, E.H. Jr and Ichida, J.M. (2004) Gloger's rule, feather-degrading bacteria, and color variation among song sparrows. Condor, 106, 681-686.
    • 12. Cafarchia, C., Camarda, A., Romito, D., Campolo, M., Quaglia, N., Tullio, D. and Otranto, D. (2006) Occurrence of yeasts in cloacae of migratory birds. Mycopathologia, 161, 229-234.
    • 13. Campbell, B. (1949) Pied flycatchers and nestboxes. Bird Notes, 23, 224-230.
    • 14. Carter, G.R. (1982) Essentials of Veterinary Bacteriology and Mycology. USA: Michigan State University Press.
    • 15. Cook, M.I., Beissinger, S.R., Toranzos, G., Rodriguez, R.A. and Arendt, W.J. (2005) Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behavioral Ecology, 16, 30-36.
    • 16. de Hoog, G.S., Guarro, J., Gené, J. and Figueras, M.J (2000) Atlas of Clinical Fungi (2nd edn). Utrecht: Centraal Bureau voor Schimmelcultures.
    • 17. Deacon, J. (2005) Fungal Biology (4th edn). Oxford: Blackwell Publishing.
    • 18. Deinhofer, M. and Pernthaner, A. (1993) Differenzierung von Staphylokokken aus Schaf- und Ziegenmilchproben [Translation: Differentiation of staphylococci from sheep and goat milk samples]. Deutsche Tierärztliche Wochenschrift, 100, 234-236 (In German).
    • 19. Droual, R., Bickford, A.A. Walker, R.L. Channing, S.E. McFadden, C. (1991). Favus in a backyard flock of game chickens. Avian Diseases, 35, 625-630.
    • 20. Field, A.P. (2000) Discovering Statistics using SPSS for Windows: Advanced Techniques for Beginners. London: Sage Publications Ltd.
    • 21. Fischer, R. and Kües, U. (2006) Asexual sporulation in mycelial fungi. In: The Mycota: Growth, Differentiation and Sexuality (2nd edn) (eds Kües, U and Fischer, R). New York: Springer.
    • 22. Garcia, M.E., Lanzarot, P., Rodas, V.L., Costas, E. and Blanco, J.L. (2007) Fungal flora in the trachea of birds from a wildlife rehabilitation centre in Spain. Veterinarni Medicina, 52, 464-470.
    • 23. Glunder, G. (2002) Influence of diet on the occurrence of some bacteria in the intestinal flora of wild and pet birds. Deutsche Tierärztliche Wochenschrift, 109, 266-270.
    • 24. Gunderson, A.R. (2008) Feather-degrading bacteria: a new frontier in avian and host-parasite research? Auk, 125, 972-979.
    • 25. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (1994) Bergey's Manual of Determinative Bacteriology (9th edn). London: Lippincott Williams and Wilkins.
    • 26. Hubálek, Z. (1978) Coincidence of fungal species associated with birds. Ecology, 59, 438-442.
    • 27. Hubálek, Z. (2000) Keratinophilic fungi associated with free-living mammals and birds. In: Kushwaha, R.K.S. and Guarro, J. (eds.). Biology of Dermatophytes and Other Keratinophilic Fungi. São Paulo: Revista Iberoamericana de Micología. pp 93-103.
    • 28. Janiga, M., Sedlárova, A., Rigg, R. and Novotná, M. (2006) Patterns of prevalence among bacterial communities of alpine accentors (Prunella collaris) in the Tatra Mountains. Journal of Ornithology, 148, 135-143.
    • 29. Kellogg, J.A., Bankert, D.A., Withers, G.S., Sweimler, W., Kiehn, T.E. and Pfyffer, G.E. (2001) Application of the Sherlock Mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. Journal of Clinical Microbiology, 39, 964-970.
    • 30. Kunitsky, C., Osterhout, G. and Sasser, M. (2006) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock® Microbial Identification System. In: Miller, M.J. (ed.). Encyclopaedia of Rapid Microbiological Methods (Volume III). Bethesda: Parental Drug Association. pp 1- 17.
    • 32. Lombardo, M.P., Thorpe, P.A., Cichewicz , R ., Henshaw, M., Millard, C., Steen, C. and Zeller, T.K. (1996) Communities of cloacal bacteria in tree swallow families. Condor, 98, 167-172.
    • 33. Lucas, F.S. and Heeb, P. (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. Journal of Avian Biology, 36, 510-516.
    • 34. Maul, J.D., Gandhi, J.P. and Farris, J.L. (2005) Community-level physiological profiles of cloacal microbes in songbirds (Order: Passeriformes): variation due to host species, host diet and habitat. Microbial Ecology, 50, 19-28.
    • 35. McGarigal, K., Cushman, S. and Stafford, S. (2000) Multivariate Statistics for Wildlife and Ecology Research. New York: Springer-Verlag Inc.
    • 36. Mehmke, U., Gerlach, H., Kosters, J. and Hausmann, S. (1992) [The aerobic bacterial flora of songbird nests]. Deutsche Tierärztliche Wochenschrift, 99, 478-482. (In German).
    • 37. Mielnichuk, N. and Lopez, S.E. (2007) Interaction between Epicoccum purpurascens and xylophagous basidiomycetes on wood blocks. Forest Pathology, 37, 236-242.
    • 38. Mills, T.K., Lombardo, M.P. and Thorpe, P.A. (1999) Microbial colonization of the cloacae of nestling tree swallows. Auk, 116, 947-956.
    • 39. Moreno, J., Briones, V., Merino, S., Ballesteros, C., Sanz, J.J. and Tomás, G. (2003) Beneficial effects of cloacal bacteria on growth and fledging size in nestling pied flycatchers (Ficedula hypoleuca) in Spain. Auk, 120, 784-790.
    • 40. Nakadate, S., Nozawa, K., Sato, H., Horie, H., Fujii, Y., Nagai, M., Hosoe, T. Kawai, K. and Takashi, Y. (2008) Antifungal Cyclic Depsipeptide, Eujavanicin A, Isolated from Eupenicillium javanicum. Journal of Natural Products, 71, 1640-1642.
    • 41. Nuttall, P. (1997) Viruses, bacteria and fungi of birds. In: Clayton, D. and Moore, J. (eds). Host-Parasite Evolution: General Principles and Avian Models. Oxford: Oxford University Press. pp 271-302. [8, 10]
    • 42. Osterhout, G.J., Shull, V.H. and Dick, J.D. (1991) Identification of clinical isolates of Gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. Journal of Clinical Microbiology, 29, 1822-1830.
    • 43. Palleroni, N.J., Kunisawa, R., Contopoulou, R. and Doudoroff, M. (1973) Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology. 23, 333-339.
    • 44. Pendergrass, S.M. (1998) Aerobic bacteria by GC-FAME (Method 0801) In: NIOSH Manual of Analytical Methods (4th edn). (eds Schlecht, P.C. and O'Connor, P.F.). Washington D.C.: U.S. Government Printing Office.
    • 45. Petit, C., Hossaert-McKey, M., Perret, P., Blondel, J. and Lambrechts, M.M. (2002) Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecology Letters, 5, 585-589.
    • 46. Pinowski, J., Barkowska, M., Kruszewicz, A.H. and Kruszewicz, A.G. (1994) The causes of the mortality of eggs and nestlings of Passer spp. Journal of Biosciences, 19, 441-451.
    • 47. Riffel, A. and Brandelli, A. (2006) Keratinolytic bacteria isolated from feather waste. Brazilian Journal of Microbiology, 37, 395-399.
    • 48. Ruiz-Rodríguez, M., Lucas, F.S. and Heeb, P.(2009) Differences in intestinal microbiota between avian brood parasites and their hosts. Biological Journal of the Linnean Society, 96, 406-414.
    • 49. Shaw, P. (2003) Multivariate Statistics for the Environmental Sciences. London: Hodder Arnold.
    • 50. Shawkey, M.D., Pillai, S.R. and Hill, G.E. (2003) Chemical warfare? Effects of uroygial oil on featherdegrading bacteria. Journal of Avian Biology, 34, 345-349.
    • 51. Shawkey, M.D., Mills, K.L., Dale, C. and Hill, G.E. (2005) Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microbial Ecology, 50, 40-47.
    • 52. Shawkey, M.D., Pillai, S.R., Hill, G.E., Siefferman, L.M. and Roberts, S.R. (2007) Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. American Naturalist, 169, S112-S121.
    • 53. Silvanose, C.D., Bailey, T.A., Naldo, J.L. and Howlett, J.C. (2001) Bacterial flora of the conjunctiva and nasal cavity in normal and diseased captive bustards. Avian Diseases, 45, 447-451.
    • 54. Simon, A., Thomas, D.W., Blondel, J., Perret, P. and Lambrechts, M.M. (2004) Physiological ecology of Mediterranean blue tits (Parus caeruleus L.): effects of ectoparasites (Protocalliphora spp.) and food abundance on metabolic capacity of nestlings. Physiological and Biochemical Zoology, 77, 492-501.
    • 55. Singleton, D. R. and Harper, R.G. (1998) Bacteria in old house wren nests. Journal of Field Ornithology, 69, 71-74.
    • 56. St Germain, G. and Summerbell, R. (1995) Identifying Filamentous Fungi: A Clinical Laboratory Handbook. Belmont: Star Publishing.
    • 57. Tabachnick, B.G. and Fidel, L.S. (1989) Using Multivariate Statistics (2nd edn). New York: HarperCollins
    • 58. Thompson, I.P., Bailey, M.J., Ellis, R.J. and Purdy, K.J. (1993) Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiology Letters, 102, 75-84.
    • 59. Török, J. and Tóth, L. (1999). Asymmetric competition between two tit species: a reciprocal removal experiment. Journal of Animal Ecology, 68, 338-345.
    • 60. Tortora, G.J., Funke, B.R. and Case, C.L. (2007) Microbiology: An Introduction (9th edn). London: Pearson.
    • 61. Tóth, E. M., Hell, É., Kovács, G., Borsodi, A.K. and Márialigeti, K. (2006) Bacteria Isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microbial Ecology, 51, 13-21.
    • 62. Tripet, F. and Richner, H. (1997) The coevolutionary potential of a 'generalist' parasite, the hen flea Ceratophyllus gallinae. Parasitology, 115, 419-427.
    • 63. von Graevenitz, A., Osterhout, G. and Dick, J. (1991) Grouping of some clinically relevant Gram-positive rods by automated fatty acid analysis: diagnostic implications. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 99, 147-154.
    • 64. Walker, S.E., Sander, J.E., Cline, J.L. and Helton, J.S. (2005) Characterization of Pseudomonas aeruginosa isolates associated with mortality in broiler chicks. Avian Diseases, 46, 1045-1050.
    • 65. Whitaker, J.M., Cristol, D.A. and Forsyth, M.H. (2005) Prevelence and genetic diversity of Bacillus licheniformis in avian plumage. Journal of Field Ornithology, 76, 264-270.
    • 66. Whittingham, M. J., Stephens, P. A., Bradbury, R. B., and Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology , 75, 1182-1189. 2006)
    • 67. Wieliczko, A., Piasecki, T., Dorrestein, G.M,. Adamski, A. and Mazurkiewicz, M. (2003) Evaluation of the health status of goshawk chicks (Accipiter gentilis) nesting in Wroclaw vicinity. Bulletin of the Veterinary Institute in Pulawy, 47, 247-257
    • 68. Wobester, G.A. (1981) Diseases of Wild Waterfowl. New York: Plenum Press.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article