LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tzanakis, I; Hodnett, M; Lebon, GSB; Dezhkunov, N; Eskin, DG (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Acoustic emissions, Sonochemistry, Cavitometer, Liquid metal, Metals and Alloys, Condensed Matter Physics, Surfaces, Coatings and Films, Electrical and Electronic Engineering, Sensor, Instrumentation, Electronic, Optical and Magnetic Materials, Frequency spectrum, Cavitation
This paper describes a series of systematic experimental studies to evaluate the performance of a high-temperature cavitometer under well-controlled conditions. The cavitometer was specifically designed for measurements in liquid metals: it operates through a long tungsten waveguide (probe), providing thermal protection to the piezo sensing elements placed outside the hot area, and with sufficient bandwidth to enable the monitoring of broadband acoustic emissions associated with cavitation activity. It was calibrated electrically, and acoustically, at kHz and MHz frequencies, and so can be used to estimate acoustic pressures (in Pa), providing physical, and consequently practical, meaning to cavitation measurements within liquid metals. Results obtained from ultrasonic sources in a cylindrical vessel using water showed that the cavitometer is a reliable and robust device for characterizing direct field acoustic pressures and broadband emissions from the resulting cavitation. Additionally, preliminary characterization of the real-time acoustic pressures during ultrasonic processing of liquid aluminium (Al) in a standard clay-graphite crucible were performed for the first time. The use of the calibrated cavitometer will establish a more generalized approach for measuring the actual acoustic pressures over a broad range of liquid temperatures within a sonicated medium, demonstrating its potential use as a tool for optimizing, controlling, and scaling-up processes. This work is performed within the Ultramelt Project supported by the Engineering and Physical Sciences Research Council (EPSRC) Grants EP/K005804/1 and EP/K00588X/1.

Share - Bookmark

Funded by projects

  • RCUK | Fundamental Study of Cavit...

Cite this article