Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Verdu Galiana, Jose (2011)
Publisher: Institute of Physics
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: Physics::Atomic Physics, Condensed Matter::Quantum Gases
A novel planar Penning trap is presented, which results from the projection of the well-known three-dimensional cylindrical trap onto the surface of a chip. The introduced trap is also a coplanar-waveguide cavity, similar to those used in circuit quantum electrodynamics experiments with superconducting two-level systems. It opens up the possibility of integrating a single trapped electron, or geonium atom, into quantum circuits. The trap is an elliptical Penning trap, with the magnetic field parallel to the chip's surface. A design procedure is described, which permits the compensation of electric anharmonicities up to sixth order. This should render possible the observation of a single trapped electron and the accurate measurement of its eigenfrequencies, a sine qua non requirement for a useful planar geonium technology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Van Dyck R S, Schwinberg P B and Dehmelt H G 1977 Precise measurements of axial, magnetron, cyclotron and spin-cyclotron-beat frequencies on an isolated 1-mev electron Phys. Rev. Lett. 38 310
    • [2] Brown L S and Gabrielse G 1986 Geonium theory: physics of a single electron or ion in a Penning trap Rev. Mod. Phys. 58 233-11
    • [3] Hanneke D, Fogwell S and Gabrielse G 2008 New measurement of the electron magnetic moment and the fine structure constant Phys. Rev. Lett. 100 120801
    • [4] Beier T, Ha¨ffner H, Hermanspahn N, Karshenboim S G, Kluge H-J, Quint W, Stahl S, Verdu´ J and Werth G 2001 New determination of the electron's mass Phys. Rev. Lett. 88 011603
    • [5] Ciaramicoli G, Marzoli I and Tombesi P 2001 Realization of a quantum algorithm using a trapped electron Phys. Rev. A 63 052307
    • [6] Ciaramicoli G, Marzoli I and Tombesi P 2003 Scalable quantum processor with trapped electrons Phys. Rev. Lett. 91 017901
    • [7] Ciaramicoli G, Marzoli I and Tombesi P 2004 Trapped electrons in vacuum for a scalable quantum processor Phys. Rev. A 70 032301
    • [8] DiVincenzo D P 2000 The physical implementation of quantum computation Fortschr. Phys. 48 771-83
    • [9] Stahl S, Galve F, Alonso J, Djekic´ S, Quint W, Valenzuela T, Verdu´ J, Vogel M and Werth G 2005 A planar Penning trap Eur. Phys. J. D 32 139-46
    • [10] Galve F, Ferna´ndez P and Werth G 2006 Operation of a planar Penning trap Eur. Phys. J. D 40 201-4
    • [11] Bushev P, Stahl S, Natali R, Marx G, Stachowska E, Werth G, Hellwig M and Schmidt-Kaler F 2008 Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing Eur. Phys. J. D 50 97-102
    • [12] Goldman J and Gabrielse G 2010 Optimized planar Penning traps for quantum-information studies Phys. Rev. A 81 052335
    • [13] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 A broadband superconducting detector suitable for use in large arrays Nature 425 817-21
    • [14] Wen C P 1969 Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications IEEE Trans. Microw. Theory Tech. MTT-17 1087
    • [15] Blais A, Huang R-S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation Phys. Rev. A 69 062320
    • [16] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics Nature 431 162
    • [17] Gabrielse G and MacKintosh F C 1984 Cylindrical Penning traps with orthogonalized anharmonicity compensation Int. J. Mass Spectrom. Ion Process. 57 1
    • [18] Schuster D I et al 2010 High-cooperativity coupling of electron-spin ensembles to superconducting cavities Phys. Rev. Lett. 105 140501
    • [19] Verdu´ J, Zoubi H, Koller Ch, Majer J, Ritsch H and Schmiedmayer J 2009 Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity Phys. Rev. Lett. 103 043603
    • [20] Andre´ A, DeMille D, Doyle J M, Lukin M D, Rabl P, Schoelkopf R J and Zoller P 2006 A coherent allelectrical interface between polar molecules and mesoscopic superconducting resonators Nat. Phys. 2 636
    • [21] Gabrielse G 1983 Relaxation calculation of the electrostatic properties of compensated Penning traps with hyperbolic electrodes Phys. Rev. A 27 2277-90
    • [22] Verdu´ J L, Kreim S, Blaum K, Kracke H, Quint W, Ulmer S and Walz J 2008 Calculation of electrostatic fields using quasi-Green's functions: application to the hybrid Penning trap New J. Phys. 10 23
    • [23] Breitenfeldt M, Baruah S, Blaum K, Herlert A, Kretzschmar M, Martinez F, Marx G, Schweikhard L and Walsh N 2008 The elliptical Penning trap: experimental investigations and simulations Int. J. Mass Spectrom. 275 34-44
    • [24] Kretzschmar M 2008 Theory of the elliptical Penning trap Int. J. Mass Spectrom. 275 21-33
    • [25] Blaum K 2006 High-accuracy mass spectrometry with stored ions Phys. Rep. 425 1-78
    • [26] Hermanspahn N, Ha¨ffner H, Kluge H-J, Quint W, Stahl S, Verdu´ J and Werth G 2000 Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion Phys. Rev. Lett. 84 427-30
    • [27] Djekic S, Alonso J, Kluge H-J, Quint W, Stahl S, Valenzuela T, Verdu´ J, Vogel M and Werth G 2004 Temperature measurement of a single ion in a Penning trap Eur. Phys. J. D 31 451-7
    • [28] Itano W M, Bergquist J C, Bollinger J J and Wineland D J 1995 Cooling methods in ion traps Phys. Scr. T59 106-20
    • [29] Cornell E A, Weisskoff R M, Boyce K R and Pritchard D E 1990 Mode coupling in a Penning trap: π pulses and a classical avoided crossing Phys. Rev. A 41 312-5
    • [30] Ha¨ffner H, Beier T, Hermanspahn N, Kluge H-J, Quint W, Stahl S, Verdu´ J and Werth G 2000 High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon Phys. Rev. Lett. 85 5308-11
    • [31] Verdu´ J, Djekic S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H-J and Quint W 2004 Electronic g factor of hydrogenlike oxygen 16O7+ Phys. Rev. Lett. 92 093002
    • [32] Ha¨ffner H, Beier T, Djekic S, Hermanspahn N, Kluge H-J, Quint W, Stahl S, Verdu´ J, Valenzuela T and Werth G 2003 Double Penning trap technique for precise g factor determinations in highly charged ions Eur. Phys. J. D 22 163-82
    • [33] Wineland D J and Dehmelt H G 1975 Principles of the stored ion calorimeter J. Appl. Phys. 46 919
    • [34] Jackson J D 2005 Classical Electrodynamics (New York: Wiley)
    • [35] Goldstein H 1980 Classical Mechanics (Reading, MA: Addison-Wesley)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | The CPW-cavity planar Penn...

Cite this article