LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Martin, Richard; Twyman, Helen L.; Rees, Gregory J.; Barney, Emma R.; Moss, Robert M.; Smith, Jodie M.; Hill, Robert G.; Cibin, G.; Charpentier, T.; Smith, Mark E.; Hanna, John V.; Newport, Robert J. (2012)
Languages: English
Types: Article
Subjects:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 L. L. Hench, J. Mater. Sci.: Mater. Med., 2006, 17, 967.
    • 2 L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee, J. Biomed. Mater. Res. Symp., 1971, 5, 25.
    • 3 J. C. Knowles, J. Mater. Chem., 2003, 13, 2395.
    • 4 R. G. Hill, A. Stamboulis, R. V. Law, A. Clifford, M. R. Towler and C. Crowley, J. Non-Cryst. Solids, 2004, 336, 223.
    • 5 E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos and P. J. Marie, Bone, 1996, 18, 517.
    • 6 A. Guida, M. R. Towler, J. G. Wall, R. G. Hill and S. Eramo, J. Mater. Sci. Lett., 2003, 22, 1401.
    • 7 R. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751.
    • 8 J. Terra, E. R. Dourado, J. G. Eon, D. E. Ellis, G. Gonzalez and A. Malta Rossi, Phys. Chem. Chem. Phys., 2009, 11, 568.
    • 9 S. Sugiyama, T. Moriga, M. Goda, H. Hayashi and J. B. Moffat, J. Chem. Soc., Faraday Trans., 1996, 92, 4305.
    • 10 S. G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P. D. Delmas and C. Christiansen, Bone, 2001, 28, 446.
    • 11 M. D. Grynpas and P. J. Marie, Bone, 1990, 11, 313.
    • 12 P. J. Marie, M. T. Garba, M. Hott and L. Miravet, Miner. Electrolyte Metab., 1985, 11, 5.
    • 13 A. Barbara, P. Delannoy, B. G. Denis and P. J. Marie, Metab., Clin. Exp., 2004, 53, 532.
    • 14 P. J. Marie, Bone, 2007, 40, S5.
    • 15 P. J. Marie, Osteoporosis Int., 2005, 16(suppl. 1), S7.
    • 16 P. J. Meunier, C. Roux, E. Seeman, S. Ortolani, J. E. Badurski, T. D. Spector, J. Cannata, A. Balogh, E. M. Lemmel, S. PorsNielsen, R. Rizzoli, H. K. Genant and J. Y. Reginster, N. Engl. J. Med., 2004, 350, 459.
    • 17 J. Y. Reginster, E. Seeman, M. C. De Vernejoul, S. Adami, J. Compston, C. Phenekos, J. P. Devogelaer, M. D. Curiel, A. Sawicki, S. Goemaere, O. H. Sorensen, D. Felsenberg and P. J. Meunier, J. Clin. Endocrinol. Metab., 2005, 90, 2816.
    • 18 M. G. Dedhiya, F. Young and W. I. Higuchi, J. Dent. Res., 1973, 52, 1097.
    • 19 M. E. J. Curzon, J. Dent. Res., 1985, 64, 1386.
    • 20 T. M. Athanassouli, D. S. Papastathopoulos and A. X. Apostolopoulos, J. Dent. Res., 1983, 62, 989.
    • 21 T. T. Thuy, H. Nakagaki, K. Kato, P. A. Hung, J. Inukai, S. Tsuboi, H. Nakagaki, M. N. Hirose, S. Igarashi and C. Robinson, Arch. Oral Biol., 2008, 53, 1017.
    • 22 J. D. B. Featherstone, C. P. Shields, B. Khademazad and M. D. Oldershaw, J. Dent. Res., 1983, 62, 1049.
    • 23 L. J. Skipper, F. E. Sowrey, D. M. Pickup, K. O. Drake, M. E. Smith, P. Saravanapavan, L. L. Hench and R. J. Newport, J. Mater. Chem., 2005, 15, 2369.
    • 24 L. J. Skipper, F. E. Sowrey, R. Rashid, R. J. Newport, Z. Lin and M. E. Smith, Phys. Chem. Glasses, 2005, 46, 372.
    • 25 V. FitzGerald, R. A. Martin, J. R. Jones, D. Qiu, K. M. Wetherall, R. M. Moss and R. J. Newport, J. Biomed. Mater. Res., Part A, 2009, 91, 76.
    • 26 Z. J. Lin, M. E. Smith, F. E. Sowrey and R. J. Newport, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 69, 224107.
    • 27 R. Hill, J. Mater. Sci. Lett., 1996, 15, 1122.
    • 28 I. Elgayar, A. E. Aliev, A. R. Boccaccini and R. G. Hill, J. Non-Cryst. Solids, 2005, 351, 173.
    • 29 R. A. Martin, H. Twyman, D. Qiu, J. C. Knowles and R. J. Newport, J. Mater. Sci.: Mater. Med., 2009, 20, 883.
    • 30 A. C. Hannon, Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 551, 88.
    • 31 P. H. Gaskell, Glasses and Amorphous Materials, Materials Science and Technology, 9th edn, 1991, p. 175.
    • 32 R. A. Martin, P. S. Salmon, H. E. Fischer and G. J. Cuello, J. Phys.: Condens. Matter, 2003, 15, 8235.
    • 33 R. A. Martin, P. S. Salmon, H. E. Fischer and G. J. Cuello, Phys. Rev. Lett., 2003, 90, 185501.
    • 34 J.-P. Amoureux, C. Fernandez and S. Steuernagel, J. Magn. Reson., Ser. A, 1996, 123, 116.
    • 35 A. J. Dent, G. Cibin, S. Ramos, A. D. Smith, S. M. Scott, L. Varandas, M. R. Pearson, N. A. Krumpa, C. P. Jones and P. E. Robbins, B18: A Core XAS Spectroscopy Beamline for Diamond, 14th International Conference on X-Ray Absorption Fine Structure, ed. A. F. A. DiCicco, 2009, vol. 190.
    • 36 B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537.
    • 37 M. Newville, J. Synchrotron Radiat., 2001, 8, 322.
    • 38 A. K. Soper and E. R. Barney, J. Appl. Crystallogr., 2011, 44, 714.
    • 39 B. E. Warren, X-ray Diffraction, 1990.
    • 40 R. M. Moss, PhD thesis, University of Kent, 2009.
    • 41 H. Ohsato, I. Maki and Y. Takeuchi, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, 41, 1575.
    • 42 R. J. Newport, L. J. Skipper, V. FitzGerald, D. M. Pickup, M. E. Smith and J. R. Jones, J. Non-Cryst. Solids, 2007, 353, 1854.
    • 43 S. K. Lee and J. F. Stebbins, J. Phys. Chem. B, 2003, 107, 3141.
    • 44 F. Nishi, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1997, 53, 534.
    • 45 R. E. Marsh and F. H. Herbstein, Acta Crystallogr., Sect. B: Struct. Sci., 1983, 39, 280.
    • 46 V. Kahlenberg, J. Alloys Compd., 2004, 366, 132.
    • 47 R. A. Martin, S. Yue, J. V. Hanna, P. D. Lee, R. J. Newport, M. E. Smith and J. R. Jones, Philos. Trans. R. Soc., A, 2012, 370, 1422.
    • 48 A. Samoson, J. Magn. Reson., Ser. A, 1996, 121, 209.
    • 49 A. P. M. Kentgens, Geoderma, 1997, 80, 271.
    • 50 R. Dupree, A. P. Howes and S. C. Kohn, Chem. Phys. Lett., 1997, 276, 399.
    • 51 C. Gervais, D. Laurencin, A. Wong, F. Pourpoint, J. Labram, B. Woodward, A. P. Howes, K. J. Pike, R. Dupree, F. Mauri, C. Bonhomme and M. E. Smith, Chem. Phys. Lett., 2008, 464, 42.
    • 52 F. Angeli, M. Gaillard, P. Jollivet and T. Charpentier, Chem. Phys. Lett., 2007, 440, 324.
    • 53 A. Pedone, T. Charpentier, G. Malavasi and M. C. Menziani, Chem. Mater., 2010, 22, 5644.
    • 54 T. F. Kemp and M. E. Smith, Solid State Nucl. Magn. Reson., 2009, 35, 243.
    • 55 U. Hoppe, G. Walter, A. Barz, D. Stachel and A. C. Hannon, J. Phys.: Condens. Matter, 1998, 10, 261.
    • 56 R. A. Martin, P. S. Salmon, C. J. Benmore, H. E. Fischer and G. J. Cuello, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 68, 054203.
    • 57 R. A. Martin, P. S. Salmon, H. E. Fischer and G. J. Cuello, J. NonCryst. Solids, 2004, 345-346, 208.
    • 58 V. FitzGerald, D. M. Pickup, D. Greenspan, G. Sarkar, J. J. Fitzgerald, K. M. Wetherall, R. M. Moss, J. R. Jones and R. J. Newport, Adv. Funct. Mater., 2007, 17, 3746.
    • 59 A. N. Cormack and J. C. Du, J. Non-Cryst. Solids, 2001, 293, 283.
    • 60 A. Tilocca, J. Chem. Phys., 2008, 129, 084504.
    • 61 R. A. Martin, H. L. Twyman, G. J. Rees, J. M. Smith, E. R. Barney, M. E. Smith, J. V. Hanna and R. J. Newport, Phys. Chem. Chem. Phys., 2012, 14, 12105.
    • 62 Y. Xiang and J. Du, Chem. Mater., 2011, 23, 2703.
    • 63 Y. C. Fredholm, N. Karpukhina, R. V. Law and R. G. Hill, J. NonCryst. Solids, 2010, 356, 2546.
    • 64 Y. C. Fredholm, N. Karpukhina, D. S. Brauer, J. R. Jones, R. V. Law and R. G. Hill, J. R. Soc., Interface, 2011, 1742.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Identification and Optimis...

Cite this article