LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cooper, Randall L.; Mukhopadhyay, Banibrata; Steeghs, D.; Narayan, Ramesh (2006)
Publisher: Institute of Physics Publishing Ltd.
Languages: English
Types: Preprint
Subjects: QB, Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics
We have investigated the physical conditions under which accreting neutron stars in low-mass X-ray binaries can both produce and preserve sufficient quantities of carbon fuel to trigger superbursts. Our theoretical models span the plausible ranges of neutron star thermal conductivities, core neutrino emission mechanisms, and areal radii, as well as the CNO abundances in the accreted material. We find that neutron stars that accrete hydrogen-rich material with CNO mass fractions ZCNO ZCNO,☉ will not exhibit superbursts under any circumstances. Neutron stars that accrete material with CNO mass fractions 4ZCNO,☉ will exhibit superbursts at accretion rates in the observed range. On this basis, we suggest that the mass donors of superburst systems must have enhanced CNO abundances. The accreted CNO acts only as a catalyst for hydrogen burning via the hot CNO cycle, and therefore it is the sum of the three elements' mass fractions, not the individual mass fractions themselves, that is important. Systems that exhibit superbursts are observed to differ from those that do not exhibit superbursts in the nature of their helium-triggered type I X-ray bursts: the bursts have shorter durations and much greater α-values. Increasing the CNO abundance of the accreted material in our models reproduces both of these observations, thus once again suggesting enhanced CNO abundances in the mass donors. Many compact binary systems have been observed in which the abundances of the accreting material are distinctly nonsolar. Although abundance analyses of the systems that exhibit superbursts currently do not exist, Bowen fluorescence blend profiles of 4U 1636-536 and Ser X-1 suggest that the mass donor stars may indeed have nonsolar CNO metallicities. More detailed abundance analyses of the accreting matter in systems that exhibit superbursts are needed to verify our assertion that the matter is rich in CNO elements.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arnett, W. D. & Truran, J. W. 1969, ApJ, 157, 339
    • Baym, G., Pethick, C., & Pines, D. 1969, Nature, 224, 673
    • Bildsten, L. 1995, ApJ, 438, 852
    • Bildsten, L. 1998, in NATO ASIC Proc. 515: The Many Faces of Neutron Stars., 419
    • Bonnet-Bidaud, J.-M. & Mouchet, M. 2004, in ASP Conf. Ser. 315: IAU Colloq. 190: Magnetic Cataclysmic Variables, 149
    • Brown, E. F. 2000, ApJ, 531, 988
    • -. 2004, ApJ, 614, L57
    • Casares, J., Steeghs, D., Hynes, R. I., Charles, P. A., Cornelisse, R., & O'Brien, K. 2004, in Revista Mexicana de Astronomia y Astrofisica Conference Series, 21-22
    • Chakrabarti, S. K. & Mukhopadhyay, B. 1999, A&A, 344, 105
    • Clayton, D. D. 1983, Principles of Stellar Evolution and Nucleosynthesis (Chicago: Univ. Chicago Press)
    • Cooper, R. L. & Narayan, R. 2004, AAS HEAD Meeting, 8, 17.28
    • -. 2005, ApJ, 629, 422
    • Cornelisse, R., in't Zand, J. J. M., Verbunt, F., Kuulkers, E., Heise, J., den Hartog, P. R., Cocchi, M., Natalucci, L., Bazzano, A., & Ubertini, P. 2003, A&A, 405, 1033
    • Cumming, A. 2003, ApJ, 595, 1077
    • -. 2004, Nuclear Physics B Proceedings Supplements, 132, 435
    • Cumming, A. & Bildsten, L. 2001, ApJ, 559, L127
    • Cumming, A., Macbeth, J., in 't Zand, J. J. M., & Page, D. 2005, submitted to ApJ (astro-ph/0508432)
    • de Kool, M. & Green, P. J. 1995, ApJ, 449, 236
    • den Hartog, P. R., in't Zand, J. J. M., Kuulkers, E., Cornelisse, R., Heise, J., Bazzano, A., Cocchi, M., Natalucci, L., & Ubertini, P. 2003, A&A, 400, 633
    • Fisker, J. L., Brown, E. F., Liebendörfer, M., Thielemann, F.-K., & Wiescher, M. 2005, Nuclear Physics A, 752, 604
    • Fisker, J. L., Gorres, J., Wiescher, M., & Davids, B. 2004, preprint (astro-ph/0410561)
    • Fowler, W. A., Caughlan, G. R., & Zimmerman, B. A. 1975, ARA&A, 13, 69
    • Fuller, G. M., Fowler, W. A., & Newman, M. J. 1980, ApJS, 42, 447
    • -. 1982a, ApJ, 252, 715
    • -. 1982b, ApJS, 48, 279
    • Fushiki, I. & Lamb, D. Q. 1987, ApJ, 317, 368
    • Gänsicke, B. T., Szkody, P., de Martino, D., Beuermann, K., Long, K. S., Sion, E. M., Knigge, C., Marsh, T., & Hubeny, I. 2003, ApJ, 594, 443
    • Harris, M. J., Fowler, W. A., Caughlan, G. R., & Zimmerman, B. A. 1983, ARA&A, 21, 165
    • Haswell, C. A., Hynes, R. I., King, A. R., & Schenker, K. 2002, MNRAS, 332, 928
    • Hoyle, F. & Fowler, W. A. 1965, in Quasi-Stellar Sources and Gravitational Collapse, 17
    • Hynes, R. I., Charles, P. A., van Zyl, L., Barnes, A., Steeghs, D., O'Brien, K., & Casares, J. 2004, MNRAS, 348, 100
    • in't Zand, J. J. M., Cornelisse, R., & Cumming, A. 2004a, A&A, 426, 257
    • in't Zand, J. J. M., Cornelisse, R., Kuulkers, E., Heise, J., Verbunt, F., & Cumming, A. 2004b, AAS HEAD Meeting, 8, 25.04
    • in't Zand, J. J. M., Kuulkers, E., Verbunt, F., Heise, J., & Cornelisse, R. 2003, A&A, 411, L487
    • Israelian, G., Rebolo, R., Basri, G., Casares, J., & Martín, E. L. 1999, Nature, 401, 142
    • Itoh, N. & Kohyama, Y. 1993, ApJ, 404, 268
    • Jimenez-Garate, M. A., Raymond, J. C., Liedahl, D. A., & Hailey, C. J. 2005, ApJ, 625, 931
    • Kahn, S. M. & Grindlay, J. E. 1984, ApJ, 281, 826
    • Koike, O., Hashimoto, M., Kuromizu, R., & Fujimoto, S. 2004, ApJ, 603, 242
    • Kuulkers, E. 2004, Nuclear Physics B Proceedings Supplements, 132, 466
    • -. 2005, The Astronomer's Telegram, 483, 1
    • Kuulkers, E., Homan, J., van der Klis, M., Lewin, W. H. G., & Méndez, M. 2002a, A&A, 382, 947
    • Kuulkers, E., in't Zand, J., Homan, J., van Straaten, S., Altamirano, D., & van der Klis, M. 2004, in AIP Conf. Proc. 714: X-ray Timing 2003: Rossi and Beyond, 257-260
    • Kuulkers, E., in't Zand, J. J. M., van Kerkwijk, M. H., Cornelisse, R., Smith, D. A., Heise, J., Bazzano, A., Cocchi, M., Natalucci, L., & Ubertini, P. 2002b, A&A, 382, 503
    • Kuulkers, E., van der Klis, M., Oosterbroek, T., van Paradijs, J., & Lewin, W. H. G. 1997, MNRAS, 287, 495
    • Lamb, D. Q. 2000, ApJS, 127, 395
    • Lang, K. R. 1999, Astrophysical Formulae (New York: Springer)
    • Lewin, W. H. G., Penninx, W., van Paradijs, J., Damen, E., Sztajno, M., Truemper, J., & van der Klis, M. 1987, ApJ, 319, 893
    • Mészáros, P. 1992, High-Energy Radiation from Magnetized Neutron Stars (Chicago: Univ. Chicago Press)
    • Mukhopadhyay, B. & Chakrabarti, S. K. 2000, A&A, 353, 1029
    • -. 2001, ApJ, 555, 816
    • Muno, M. P., Fox, D. W., Morgan, E. H., & Bildsten, L. 2000, ApJ, 542, 1016
    • Narayan, R. & Heyl, J. S. 2003, ApJ, 599, 419
    • Podsiadlowski, P., Rappaport, S., & Pfahl, E. 2004, in Revista Mexicana de Astronomia y Astrofisica Conference Series, 97-100
    • Podsiadlowski, P., Rappaport, S., & Pfahl, E. D. 2002, ApJ, 565, 1107
    • Ramsay, G., Hakala, P., Marsh, T., Nelemans, G., Steeghs, D., & Cropper, M. 2005, A&A, 440, 675
    • Remillard, R., Morgan, E., & The ASM Team at MIT, N. 2005a, The Astronomer's Telegram, 482, 1
    • Remillard, R. A., Lin, D., Cooper, R. L., & Narayan, R. 2005b, submitted to ApJ (astro-ph/0509758)
    • Schatz, H., Aprahamian, A., Barnard, V., Bildsten, L., Cumming, A., Ouellette, M., Rauscher, T., Thielemann, F.-K., & Wiescher, M. 2001, Physical Review Letters, 86, 3471
    • Schatz, H., Bildsten, L., Cumming, A., & Ouellette, M. 2003, Nuclear Physics A, 718, 247
    • Schatz, H., Bildsten, L., Cumming, A., & Wiescher, M. 1999, ApJ, 524, 1014
    • Shapiro, S. L. & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: Wiley)
    • Shih, I. C., Bird, A. J., Charles, P. A., Cornelisse, R., & Tiramani, D. 2005, MNRAS, 593
    • Steeghs, D. & Casares, J. 2002, ApJ, 568, 273
    • Steinhardt, C. L. & Sasselov, D. D. 2005, preprint (astro-ph/0502152)
    • Strohmayer, T. & Bildsten, L. 2005, in Compact Stellar X-Ray Sources, ed. W. H. G. Lewin and M. van der Klis (Cambridge: Cambridge Univ. Press), in press (astro-ph/0301544)
    • Strohmayer, T. E. & Brown, E. F. 2002, ApJ, 566, 1045
    • Strohmayer, T. E. & Markwardt, C. B. 2002, ApJ, 577, 337
    • Sztajno, M., Basinska, E. M., Cominsky, L. R., Marshall, F. J., & Lewin, W. H. G. 1983, ApJ, 267, 713
    • Sztajno, M., van Paradijs, J., Lewin, W. H. G., Langmeier, A., Trumper, J., & Pietsch, W. 1986, MNRAS, 222, 499
    • Tawara, Y., Hirano, T., Kii, T., Matsuoka, M., & Murakami, T. 1984, PASJ, 36, 861
    • Thielemann, F.-K. 1980, Ph.D. Thesis
    • Thorstensen, J. R., Fenton, W. H., Patterson, J., Kemp, J., Halpern, J., & Baraffe, I. 2002, PASP, 114, 1117
    • Tillett, J. C. & MacDonald, J. 1992, ApJ, 388, 555
    • van Paradijs, J., Cominsky, L., Lewin, W. H. G., & Joss, P. C. 1979, Nature, 280, 375
    • van Paradijs, J., Penninx, W., & Lewin, W. H. G. 1988a, MNRAS, 233, 437
    • van Paradijs, J., Penninx, W., Lewin, W. H. G., Sztajno, M., & Truemper, J. 1988b, A&A, 192, 147
    • van Riper, K. A. 1988, ApJ, 329, 339
    • Wachter, S., Hoard, D. W., Bailyn, C. D., Corbel, S., & Kaaret, P. 2002, ApJ, 568, 901
    • Wagoner, R. V., Fowler, W. A., & Hoyle, F. 1967, ApJ, 148, 3
    • Wallace, R. K. & Woosley, S. E. 1981, ApJS, 45, 389
    • Wijnands, R. 2001, ApJ, 554, L59
    • Wijnands, R., Guainazzi, M., van der Klis, M., & Méndez, M. 2002, ApJ, 573, L45
    • Wijnands, R. A. D., van der Klis, M., Psaltis, D., Lamb, F. K., Kuulkers, E., Dieters, S., van Paradijs, J., & Lewin, W. H. G. 1996, ApJ, 469, L5+
    • Woosley, S. E., Arnett, W. D., & Clayton, D. D. 1973, ApJS, 26, 231
    • Woosley, S. E., Heger, A., Cumming, A., Hoffman, R. D., Pruet, J., Rauscher, T., Fisker, J. L., Schatz, H., Brown, B. A., & Wiescher, M. 2004, ApJS, 151, 75
    • Yakovlev, D. G., Kaminker, A. D., Gnedin, O. Y., & Haensel, P. 2001, Phys. Rep., 354, 1
    • Yakovlev, D. G., Levenfish, K. P., & Shibanov, Y. A. 1999, Uspekhi Fizicheskikh Nauk, 42, 737
    • Yakovlev, D. G. & Pethick, C. J. 2004, ARA&A, 42, 169
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article