LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Morton, Richard; Hood, Alan William; Erdélyi, Robert (2010)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: F300, G100

Classified by OpenAIRE into

arxiv: Physics::Space Physics
Aims: We present an investigation into how the cooling of the background plasma influences the propagation of slow and fast MHD wave modes supported by an unbounded, homogenous plasma. Previous investigations have suggested that the cooling of the plasma and a reduction in density could lead to the damping of fast magneto-acoustic oscillations. We aim to investigate whether cooling of the background plasma at a constant density may be responsible for the damping of slow and fast modes. \ud Methods: The plasma is assumed homogeneous and the background temperature (pressure) is decreasing with time. The temperature change is assumed to be due to optically thin radiation. A special case of the radiative function is chosen to allow an analytical assessment of the effects of cooling on magneto-acoustic MHD modes and ensures the temperature evolution of the background plasma due to this radiation also matches the observed cooling profile of coronal loops. \ud Results: A time-dependent dispersion relation is obtained on the slow timescale of cooling and full time-dependent solutions are found. Leading order equations for the amplitude of the waves are obtained and solved analytically for the slow and fast MHD modes. The cooling of the plasma is found to cause the frequency of the magneto-acoustic modes to decrease with time. The slow modes are found to experience a greater change in frequency than the fast modes. More importantly, the radiative losses also provide a significant damping of the slow mode and a small damping of the component of the fast mode perpendicular to the magnetic field. The damping of the slow mode is found to be strong within typical lifetimes of oscillations observed in coronal structures. Cooling could have important consequences and needs to be assessed when trying to determine what mechanism is responsible for the observed damping of coronal oscillations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T. 2005, A&A, 430, 1109
    • Andries, J., Arregui, I., & Goossens, M. 2005, ApJ, 624, L57
    • Andries, J., Van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., & Erdélyi, R. 2009, Space Sci. Rev., published online, DOI: 10.1007/s11214-009-9561-2
    • Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, J. Comp. Phys., 171, 151
    • Aschwanden, M. J., & Terradas, J. 2008, ApJ, 686, L127
    • Banerjee, D., Erdélyi, R., Oliver, R., & O'Shea, E. 2007, Sol. Phys., 246, 3
    • Bender, C. M., & Orszag, S. A. 1978, Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)
    • Carbonell, M., Terradas, J., Oliver, R., & Ballester, J. L. 2006, A&A, 460, 573
    • De Moortel, I., & Hood, A. W. 2003, A&A, 408, 755
    • De Moortel, I., & Hood, A. W. 2004, A&A, 415, 705
    • De Moortel, I. 2005, Roy. Soc. Lond. Phil. Trans. Ser. A, 363, 2743
    • Dymova, M. V., & Ruderman, M. S. 2006, A&A, 459, 241
    • Erdélyi, R. 2008, in Waves and Oscillations in the Solar Atmosphere, ed. B. N. Dwivedi, & U. Narain (Princeton Series in Astrophysics), 61
    • Erdélyi, R., & Taroyan, Y. 2008, A&A, 489, L49
    • Field, G. B. 1965, ApJ, 142, 531
    • Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39
    • Goossens, M., & Terradas, J., & Andries, J., & Arregui, I. & Ballester, J. L. 2009, A&A, 503, 213
    • Ibanez, S. M. H., & Escalona, T. O. B. 1993, ApJ, 415, 335
    • Jakimiec, J., Sylwester, B., Sylwester, J., et al. 1992, A&A, 253, 269
    • Lighthill, M. J. 1960, Phil. Trans. Roy. Soc. A, 252, 397
    • McEwan, M. P., Donnelly, G. R., Díaz, A. J., & Roberts, B. 2006, A&A, 460, 893
    • Mendoza-Briceño, C. A., Erdélyi, R., & Sigalotti, L. D. G. 2004, ApJ, 605, 493
    • Morton, R., & Erdélyi, R. 2009a, A&A, 502, 315
    • Morton, R., & Erdélyi, R. 2009b, ApJ, 707, 750
    • Nakariakov, V. M., & Verwichte, E. 2005, Living Rev. Sol. Phys., 2, 3
    • Ofman, L., & Wang, T. 2002, ApJ, 580, L85
    • Owen, N. R., De Moortel, I., & Hood, A. W. 2009, A&A, 494, 339
    • Ruderman, M. S., & Erdélyi, R. 2009, Space Sci. Rev., published online, DOI: 10.1007/s11214-009-9535-4
    • Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475
    • Ruderman, M. S., Verth, G., & Erdélyi, R. 2008, ApJ, 686, 694
    • Taroyan, Y. 2008, IAU Symp. 247, ed. R. Erdélyi, & C. A. Mendoza-Briceño, 184
    • Taroyan, Y., & Erdélyi, R. 2009, Space Sci. Rev., published online, DOI: 10.1007/s11214-009-9506-9
    • Terradas, J., Carbonell, M., Oliver, R., & Ballester, J. L. 2005, A&A, 434, 741
    • Terradas, J., Oliver, R., & Ballester, J. L. 2006, ApJ, 642,533
    • Ugarte-Urra, I., Warren, H. P., & Brooks, D. H. 2009, ApJ, 695, 642
    • Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Sol. Phys., 223, 77
    • Verth, G., & Erdélyi, R. 2008, A&A, 486, 1015
    • Verth, G., Erdélyi, R., & Jess, D. B. 2008, ApJ, 687, L45
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article