LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Livingstone, S.J.; Evans, D.J.A.; Cofaigh, C.O.; Hopkins, J. (2010)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
The Brampton kame belt represents one of the largest glaciofluvial complexes within the UK. It is composed of an array of landform-sediment assemblages, associated with a suite of meltwater channels and situated within a palimpsest landscape of glacial features in the heart of one of the most dynamic parts of the British–Irish Ice Sheet. Glacial geomorphological mapping and sedimentological analysis have allowed a detailed reconstruction of both the morphological features and the temporal evolution of the Brampton kame belt, with processes informed by analogues from modern ice margins. The kame belt demonstrates the development of a complex glacier karst typified by the evolution of subglacial meltwater tunnels into an englacial and supraglacial meltwater system dominated by ice-walled lakes and migrating ice-contact drainage networks. Topographic inversion led to the extensive reworking of sediments, with vertical collapse and debris flows causing partial disintegration of the morphology. The resultant landform comprises a series of kettle holes, discontinuous ridges and flat-topped hills. The Pennine escarpment meltwater network, which fed the Brampton kame belt, is composed of an anastomosing subglacial channel system and flights of lateral channels. The Brampton kame belt is envisaged to have formed during the stagnation of ice in the lee of the Pennines as ice retreated westwards into the Solway Lowlands. The formation of the Brampton kame belt also has particular conceptual resonance in terms of constraining the nature of kame genesis, whereby an evolving glacier karst is a key mechanism in the spatial and temporal development of ice-contact sediment-landform associations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Boulton, G. S., (1972). Modern Arctic glaciers as depositional models for former ice sheets.
    • Journal of the Geological Society of London, 128; 361-393.
    • Brennand, T. A. (1994). Macroforms, large bedforms and rhythmic sedimentary sequences in subglacial eskers, south-central Ontario: implications for esker genesis and meltwater regime.
    • Sedimentary Geology, 91; 9-55.
    • Brennand, T. A. & Shaw, J. (1996). The Harricana glaciofluvial complex, Abitibi region, Quebec: its genesis and implications for meltwater regime and ice sheet dynamics. Sedimentary Geology, 102; 221-262.
    • Brennand, T. A. (2000). Deglacial meltwater drainage and glaciodynamics: inferencesfrom Laurentide eskers, Canada. Geomorphology, 32; 263-293.
    • Brodzikowski, K. and van Loon, A. J., (1991). Glacigenic sediments.
    • Cheel, R. J. & Rust, B. R. (1982). Coarse-grained facies of glaeiomarine deposits near Ottawa, Canada. In: Davidson-Arnott, R. Nickling W. and Fahey, B.C. (Eds), 6th Guelph Symposium on GeomorphologyResearch in Glacial, Glacio-fluvial, and Glacio-lacustrine Systems, GeoBooks, Norwich, pp. 279-295.
    • A. and Bateman, M. D., (2004). Map and GIS database of glacial landforms and features relating to the last British ice Sheet. Boreas, 33; 359-375.
    • Clayton, L. (1964). Karst topography on stagnant glaciers. Journal of Glaciology, 5; 107-112.
    • Clayton, L. & Cherry, J. A. (1967). Pleistocene superglacial and ice-walled lakes of west-central North America. North Dekota Geological Survey, Miscellaneous Series, 30; 47-52.
    • Clayton L., Attig J.W., Ham N.R., Johnson M.D., Jennings C.E. & Syverson K.M. (2008).
    • Ice-walled-lake plains: implications for the origin of hummocky glacial topography in middle North America. Geomorphology 97, 237-248.
    • Collinson, J. D., (1996). Alluvial Sediments. In, Reading, H. G. (ed). Sedimentary environments: processes, facies and stratigraphy.
    • Collinson, J. D. & Thompson, D. B. (1989). Sedimentary Structures. Unwin Hyman, London.
    • Cook, J. H. (1946). Kame-complexes and perforation deposits. American Journal of Science, 24; 573-583.
    • Donnelly, R. and Harris, C., (1989). Sedimentology and origin of deposits from a small icedammed Lake. Leirbreen, Norway. Sedimentology, 36; 581-600.
    • Dyke, A. S. (1993). Landscapes of cold-centred LateWisconsinan ice caps, Arctic Canada.
    • Progress in Physical Geography. 17; 223-247.
    • Dyke, A. S. & Evans, D. J. A., (2003). Ice-marginal terrestrial landsystems: northern Laurentide and Innuitian ice sheet margins. In Evans, D. J. A. (ed.), Glacial Landsystems. Arnold, London, 143-165.
    • Evans, D. J. A. & Twigg, D. R. (2002). The active temperate glacial landsystem: a model based on Breiðamerkurjökull and Fjallsjökull, Iceland. Quaternary Science Reviews, 21; 2143-2177.
    • Evans, D. J. A., Clark, C. D. and Mitchell, W. A., (2005). The last British Ice Sheet: A review of the evidence utilised in the compilation of the Glacial Map of Britain. Earth Science Reviews, 70; 253-312.
    • Evans, D. J. A. (2009). Controlled moraines: origin, characteristics and palaeoglaciological implications. Quaternary Science Reviews, 28(3-4); 183-208.
    • Evans, D. J. A., Livingstone, S. J., Vieli, A. and Ó Cofaigh, C, (2009). The palaeoglaciology of the central sector of the British and Irish Ice Sheet: reconciling glacial geomorphology and preliminary ice sheet modelling. Quaternary Science Reviews, 28; 739-757.
    • Eyles, N. (1979). Facies of supraglacial sedimentation on Icelandic and Alpine temperate glaciers. Canadian Journal of Earth Science, 16; 1341-1361.
    • Eyles, N., Clark, B. M. and Clague, J. J. (1987). Coarse-grained sediment gravity flow facies in a large supraglacial lake. Sedimentology, 34; 193-216.
    • Glasser, N. F. & Sambrook Smith, G. H. (1999). Glacial meltwater erosion of the Mid-Cheshire Ridge: implications for ice dynamics during the Late Devensian glaciation of northwest England.
    • Journal of Quaternary Science, 14; 703-710.
    • Gravenor, C. P. & Kupsch, W. O., (1959). Ice-distintegration features in western Canada. Journal of Geology, 67; 48-64.
    • Greenwood S. L., Clark, C. D. and Hughes, A. L. C., (2007). Formalising an inversion methodology for reconstructing ice-sheet retreat patterns from meltwater channels: application to the British Ice Sheet. Journal of Quaternary Science, 22(6); 637-645.
    • Gordon, S., Sharp, M., Hubbard, B., Smart, C., Ketterling, B. & Willis, I. (1998). Seasonal reorganisation of subglacial drainage inferred from measurements in boreholes. Hydrological Processes, 12; 105-133.
    • Gorrell, G. & Shaw, J. (1991). Deposition in an esker, bead and fan complex, Lanark, Ontario, Canada. Sedimentary Geology, 72; 285-314.
    • Gustavson, T. C. & Boothroyd, J. C. (1987). Depositional model for outwash, sediment sources, and hydrologic characteristics, Malaspina Glacier, Alaska: A modern analog of the southeastern margin of the Laurentide Ice Sheet. Geological Society of America, 99(2); 187-200.
    • Ham, N. R. & Attig, J. W., (1997). Pleistocene geology of Lincoln County, Wisconsin, Wisconsin Geological and Natural History Survey Bulletin 93, 31 pp.
    • Hättestrand, C. (1998). The glacial geomorphology of central and northern Sweden. Sveriges Geologiska Undersökning Ca, 85; 1-47.
    • Holmes, C. D. (1947). Kames. American journal of Science, 245; 240-249.
    • Huddart, D. (1970). Aspects of glacial sedimentation in the Cumberland Lowland. Unpublished PhD Thesis.
    • Huddart, D. & Bennett, M. R., (1997). The Carstairs Kames (Lanarkshire, Scotland): morphology, sedimentology and formation. Journal of Quaternary Science, 12(6); 467-484.
    • Huddart, D. (1981). Fluvioglacial systems in Edenside (middle Eden Valley and Brampton kame belt). In, Boardman J. (ed), Eastern Cumbria - Field Guide. Quaternary Research Association, London, 81-103.
    • Huddart, D., Bennett, M. R. and Glasser, N. F., (1999). Morphology and sedimentology of a higharctic esker system: Vegbreen, Svalbard. Boreas, 28; 253-273.
    • Jackson, I., (1979). The sand and gravel resources of the country around Brampton, Cumbria: description of 1:25,000 resources sheet NY 55 and part of NY 56. Mineral Assessment Report for the Institute of Geological Sciences, No. 45.
    • Johnson, M. D. & Clayton, L. (2003). Supraglacial landsystems in lowland terrain. In Evans, D. J.
    • A. (ed). Glacial Landsystems. Arnold, London, pp. 228-258.
    • Jopling, A. V. & Walker, R. G., (1968). Morphology and origins of ripple-drift cross lamination, with examples from the Pleistocene of Massachusetts. Journal of Sedimentary Research, 38(4); 971-984.
    • Kjaer, K. H. & Krüger, J., (2001). The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. Sedimentology, 48; 935-952.
    • Krüger, J. (1994). Glacial processes, sediments, landforms, and stratigraphy in the terminus region of Myrdalsjökull, Iceland. Two interdisciplinary case studies. Folia Geographica Damica 21 (1994), pp. 1-233.
    • Lawson, D. E. (1979). A sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska. U.S. Army Cold Regions Research and Engineering Lab. Rpt. 79-9.
    • Lawson, D. E. (1981). Distinguishing characteristics of diamictons at the margin of the Matanuska Glacier, Alaska. ANNALS OF Glaciology, 2; 78-83.
    • Lawson, D. E. (1982). Mobilisation, movement and deposition of active subaerial sediment flows, Matanuska Glacier, Alaska. Journal of Geology. 90; 279-200.
    • Livingstone, S. J., Ó Cofaigh, C. and Evans, D. J. A., (2008). Glacial geomorphology of the central sector of the last British-Irish Ice Sheet. Journal of Maps, v2008; 358-377.
    • Mager S. & Fitzsimons S. 2007. Formation of glaciolacustrine Late Pleistocene end moraines in the Tasman Valley, New Zealand. Quaternary Science Reviews 26, 743-758.
    • Mäkinen, J. (2003). Time-transgressive deposits of repeated depositional sequences within interlobate glaciofluvial (esker) sediments in Köyliö, SW Finland. Sedimentology, 50; 327-360.
    • Mair, D. W. F., Sharp, M. J. & Willis, I. C. (2002). Evidence for basal cavity opening from analysis of surface uplift during a high-velocity event: Haut Glacier d'Arolla, Switzerland.
    • Journal of Glaciology, 48; 208-216.
    • McCarroll & Rijsdijk, K. F. (2003). Deformation styles as a key for interpreting glacial depositional environments. Journal of Quaternary Science, 18; 473-489.
    • McDonald, B. C. & Shilts, W. W. (1975). Interpretation of faults in glaciofluvial sediments. In Jopling, A. V. and McDonald, B. C. (eds). Glaciofluvial and glaciolacustrine sedimentation, p.
    • McKenzie, G. D., (1969). Observations on a collapsing kame terrace in Glacier Bay National Monument, south-eastern Alaska. Journal of Glaciology, 8(54); 413-425.
    • Miall, A. D., (1977). A review of the braided-river depositional environment. Earth Science Reviews, 13; 1-62.
    • Miall, A. D., (1985). Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Reviews, 22; 261-308.
    • Nemec, W. (1992). Depositional controls on plant growth and peat accumulation in a braidplain delta environment: Helvetiafjellet Formation (Barremian-Aptian), Svalbard. In McCabe, P. J., and Parrish, J. T. (eds). Controls on the Distribution and Quality of Cretaceous Coals: Boulder, Colorado, Geomorphological Society of America Special Paper 267.
    • Ó Cofaigh, C., Lemmen, D. S., Evans, D. J. A. and Bednarski, J. (1999). Glacial landformsediment assemblages in the Canadian High Arctic and their implications for late Quaternary glaciation. Annals of Glaciology, 28; 195-201.
    • Owen, G., (1997). Origin of an esker-like ridge - erosion or channel fill? Sedimentology of the Monington 'esker' in southwest Wales. Quaternary Science Reviews, 16; 675-684.
    • Paterson, W. S. B. (1994). The Physics of Glaciers. Elsevier, Oxford.
    • Paul, M. A., (1983). Supraglacial landsystem. In Eyles N. (eds). Glacial Geology, 91-90, Pergamon Press, Oxford.
    • Price, R. J. (1965). The changing proglacial environment of the Casement Glacier, Glacier Bay, Alaska. Transactions of the Institute of British Geographers, 36; 107-116.
    • Price, R. J., (1966). Eskers near the Casement Glacier, Alaska. Geografiska Annaler, 48B; 111- 125.
    • Price, R. J., (1969). Moraines, sandar, kames and eskers near Breidamerkurjokull, Iceland.
    • Transactions of the Institute of British Geographers, 46; 17-43.
    • Price, R. J., (1973). Glacial and fluvio-glacial landforms.
    • Punkari, M. (1997). Glacial and glaciofluvial deposits in the interlobate areas of the Scandinavian ice sheet. Quaternary Science Reviews, 16; 741-753.
    • Reineck, H. E. & Singh, I. B. (1975). Depositional Sedimentary Environments. Springer Verlag, Berlin.
    • Rich, J.L. (1943). Buried stagnant ice as a normal product of a progressively retreating glacier in a hilly region. American Journal of Science, 241; 95-99.
    • Ringrose, S. (1982). Depositional processes in the development of eskers in Manitoba. In Davidson-Arnott, R., Nickling, W. & Fahey, B. D. (eds): Research in Glacial, Glaciofluvial and Glacio-Lacustrine Systems, 117-138. Geobooks, Norwich.
    • Russell, A. J. (1995). Late Devensian meltwater movement and storage within the Ochil Hills.
    • Scottish Journal of Geology, 31, 65-78.
    • Russell, A. J., Knudsen, Ó., Fay, H., Marren, P. M., Heinz, J. and Tronicke, J., (2001).
    • Morphology and sedimentology of a giant supraglacial, ice-walled, jökulhlaup channel, Skeiðarárjökull, Iceland: implications for esker genesis. Global and Planetary Change, 28; 193- 216.
    • Russell, A.J., Fay, H., Marren, P.M., Tweed, F. S. and Knudsen, Ó. (2005). Icelandic jökulhlaup impacts. In: Caseldine, C., Russell, A., Harðardóttir, J. and Knudsen, Ó. (Eds). Iceland - Modern Processes and Past Environments vol. 5, Developments in Quaternary Science pp. 153-203.
    • Russell, A.J., Gregory, A.R., Large, A.R.G., Fleisher P.J. and Harris, T.D. (2007). Tunnel channel formation during the November 1996 Jökulhlaup, Skeiðarárjökull, Iceland, Annals of Glaciology, 45; 95-103.
    • Russell, H. A. J., Arnott, R. W. C. & Sharpe, D. R. (2003). Evidence for rapid sedimentation in a tunnel channel, Oak Ridges Moraine, southern Ontario, Canada. Sedimentary Geology, 160; 33- 55.
    • Rust, B. R. (1962). Structure and process in a braided river. Sedimentology, 18; 221-245.
    • Salt, K. E. & Evans, D. J. A., (2004). Superimposed subglacially streamlined landforms of southwest Scotland. Scottish Geographical Journal, 120(1+2); 133-147.
    • Sharpe, D. R., Russell, H. A. J. & Logan, C. (2007). A 3-dimensional geological model of the Oak Ridges Moraine area, Ontario, Canada. Journal of Maps, v2007; 239-253.
    • Shaw, J. (1972). Sedimentation in the ice-contact environment, with examples from Shropshire (England). Sedimentology, 18; 23-62.
    • Sissons, J.B., (1958). Supposed ice-dammed lakes in Britain with particular reference to the Eddleston valley, southern Scotland. Geografiska Annaler 40A; 159-187.
    • Sissons, J. B. (1960). Some aspects of glacial drainage channels in Britain. Part I. Scottish Geographical Magazine, 76, 131-146.
    • Sissons, J.B., (1961). Some aspects of glacial drainage channels in Britain. Part II. Scottish Geographical Magazine, 77; 15-36.
    • Smed, P. (1962). Studier over den fynske oguppes glaciale landskabsformer. Meddeleser fra Dansk Geologisk Forening, 15; 1-74.
    • Smith, N. D. (1985). Proglacial fluvial environment. In Ashley, G. M., Shaw, J. and Smith, N. D.
    • Smith, N. D. & Ashley, G. (1985). Proglacial lacustrine environment. In Ashley, G. M., Shaw, J.
    • Thomas, G. S. P., Connaughton, M. & Dackombe, R. V. (1985). Facies variation in a Late Pleistocene supraglacial outwash sandur from the isle of Man. Geological Journal, 20; 193-213.
    • Thomas, G. S. P. & Montague, E., (1997). The morphology, stratigraphy and sedimentology of the Carstairs eskers, Scotland, U. K. Quaternary Science Reviews, 16; 661-674.
    • Thomas, G. S. P., Chester, D. K. and Crimes, P. (1998). The Late Devensian glaciation of the eastern Lleyn Peninsula, North Wales: evidence for terrestrial depositional environments. Journal of Quaternary Science, 13(3); 255-270.
    • Trotter, F. M., (1929). The Glaciation of East Edenside, the Alston Block and the Carlisle Plain.
    • Quarterly Journal of the Geological Society of London, 85; 549-612.
    • Trotter, F. M. & Hollingworth, S. E., (1932). The geology of the Brampton district. Memoir of the Geological Survey of Great Britain, Sheet 18 (England and Wales).
    • Warren, W. P. & Ashley, G. M. (1994). Origins of the Ice-contact Stratified Ridges (Eskers) of Ireland. Journal of Sedimentary Research, 64A; 433-449.
    • Williams, P. F. & Rust B. R. (1969). The sedimentology of a braided river. Journal of Sedimentary Petrology, 39; 649-679.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article