LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guan, Jingang; Wang, Fan; Ziegler, Tom; Cox, Hazel (2006)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, QD
Identifiers:doi:10.1063/1.2217733
Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength greater than 0.1) in the energy interval of 0-20 eV, which is assigned to a X (3)Sigma(g) (-) to (3)Sigma(u) (-) transition. Furthermore, the oxygen molecule has a rich spectrum in the energy range of 14-20 eV and no spin allowed absorption bands are predicted to be observed in the range of 0-6 eV.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 B. Minaev and V. A. Minaeva, Phys. Chem. Chem. Phys. 3, 720 2001 .
    • 2 E. Levin, H. Partridge, and J. R. Stallcop, J. Thermophys. Heat Transfer 4, 469 1990 .
    • 3 J. L. Fox and S. W. Bougher, Space Sci. Rev. 55, 357 1991 .
    • 4 T. G. Slanger and P. C. Cosby, J. Phys. Chem. 92, 267 1988 .
    • 5 P. H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 1972 .
    • 6 H. F. Schaefer and F. E. Harris, J. Chem. Phys. 48, 4946 1968 .
    • 7 N. H. F. Beebe, E. W. Thulstrup, and A. Andersen, J. Chem. Phys. 64, 2080 1976 .
    • 8 H. F. Schaefer, J. Chem. Phys. 54, 2207 1971 .
    • 9 B. J. Moss and W. A. Goddard III, J. Chem. Phys. 63, 3523 1975 .
    • 10 H. Partridge, C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, J. Chem. Phys. 95, 8292 1991 .
    • 11 M. E. Casida, in Recent Developments and Applications of Modern Density Potential Theory, edited by J. M. Seminario Elsevier, Amsterdam, 1996 , p. 391.
    • 12 M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 1996 .
    • 13 S. J. A. van Gisbergen, F. Kootstra, P. R. T. Schipper, O. V. Gritsenko, J. G. Snijders, and E. J. Baerends, Phys. Rev. A 57, 2556 1998 .
    • 14 J. Guan, Ph.D. thesis, University of Montreal, 1999.
    • 15 J. Guan, M. E. Casida, and D. R. Salahub, J. Mol. Struct.: THEOCHEM 527, 229 2000 .
    • 16 S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302, 375 1999 .
    • 17 S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 1999 .
    • 18 F. Wang and T. Ziegler, J. Chem. Phys. 122, 204103 2005 .
    • 19 F. Wang and T. Ziegler, J. Chem. Phys. 121, 12191 2004 .
    • 20 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 1996 .
    • 21 D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 1998 .
    • 22 H. Eshrig and V. D. P. Servedio, J. Comput. Chem. 20, 23 1999 .
    • 23 C. van Wüllen, J. Comput. Chem. 23, 779 2002 .
    • 24 F. Wang and W. Liu, J. Chin. Chem. Soc. Taipei 50, 597 2003 .
    • 25 F. Wang and T. Ziegler, Int. J. Quantum Chem. 106, 2545 2006 .
    • 26 ADF 2005.01, Theoretical Chemistry, Vrije Universiteit, Amsterdam, 2005.
    • 27 E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41 1973 .
    • 28 E. J. Baerends and B. te Velde, J. Comput. Phys. 99, 84 1992 .
    • 29 G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 2001 .
    • 30 E. K. U. Gross and W. Kohn, Adv. Quantum Chem. 21, 255 1990 .
    • 31 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 1980 .
    • 32 A. D. Becke, Phys. Rev. A 38, 3098 1988 .
    • 33 J. P. Perdew, Phys. Rev. B 33, 8822 1986 .
    • 34 M. Grüning, O. V. Gritsento, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. 114, 652 2001 .
    • 35 P. R. T. Schipper, O. V. Gritsento, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. 112, 1344 2000 .
    • 36 R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 1994 .
    • 37 E. K. U. Gross and W. Kohn, Adv. Quantum Chem. 21, 255 1990 .
    • 38 K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure Van Nostrand Reinhold, San Francisco, 1979 , Vol. IV.
    • 39 L. Veseth, J. Chem. Phys. 114, 8789 2001 .
    • 40 S. Huzinaga and C. Arnau, Phys. Rev. A 1, 1285 1970 .
    • 41 O. V. Gritsenko, B. Braïda, and E. J. Baerends, J. Chem. Phys. 119, 1937 2003 .
    • 42 A. Görling, Phys. Rev. Lett. 83, 5459 1999 .
    • 43 D. C. Comeau and R. J. Bartlet, Chem. Phys. Lett. 207, 414 1993 .
    • 44 M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 1998 .
    • 45 R. P. Saxon and B. Liu, J. Chem. Phys. 67, 5432 1977 .
    • 46 B. R. Lewis, S. T. Gibson, T. Slanger, and D. L. Huestis, J. Chem. Phys. 110, 11123 1999 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article