LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ye, M; Yang, W; Ainscough, JF; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, DJ; Sivaprasadarao, A; Luo, J-H; Jiang, L-H (2014)
Publisher: Nature Publishing Group
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
ACM Ref: TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia-reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Flynn RW, MacWalter RS, Doney AS. The cost of cerebral ischaemia. Neuropharmacology 2008; 55: 250-256.
    • 2. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants Redox Signal 2011; 14: 1505-1517.
    • 3. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 4: 399-415.
    • 4. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982; 11: 491-498.
    • 5. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 1996; 272: 1013-1016.
    • 6. Choi DW, Koh JY. Zinc and brain injury. Annu Rev Neurosci 1998; 21: 347-375.
    • 7. Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 2003; 85: 563-570.
    • 8. Stork CJ, Li YV. Rising zinc: a significant cause of ischemic neuronal death in the CA1 region of rat hippocampus. J Cereb Blood Flow Metab 2009; 29: 1399-1408.
    • 9. Sensi SL, Paoletti P, Koh JY, Aizenman E, Bush AI, Hershfinkel M. The neurophysiology and pathology of brain zinc. J Neurosci 2011; 31: 16076-16085.
    • 10. Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009; 10: 780-791.
    • 11. Shuttleworth CW, Weiss JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 2011; 32: 480-486.
    • 12. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn2+ influx through Ca2+ -permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 1999; 96: 2414-2419.
    • 13. Yin HZ, Sensi SL, Ogoshi F, Weiss JH. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J Neurosci 2002; 22: 1273-1279.
    • 14. Calderone A, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV et al. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci 2004; 24: 9903-9913.
    • 15. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calciumpermeable AMPA receptors protects hippocampal neurons against global ischemiainduced death. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 12230-12235.
    • 16. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS et al. Expression of Ca2+-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 2004; 43: 43-55.
    • 17. Ueda Y, Obrenovitch TP, Lok SY, Sarna GS, Symon L. Changes in extracellular glutamate concentration produced in the rat striatum by repeated ischemia. Stroke 1992; 23: 1125-1130; discussion 1131.
    • 18. Suh SW, Hamby AM, Gum ET, Shin BS, Won SJ, Sheline CT et al. Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death. J Cerebr Blood Flow Metab 2008; 28: 1697-1706.
    • 19. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2013; 47: 9-23.
    • 20. Noh KM, Kim YH, Koh JY. Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J Neurochem 1999; 72: 1609-1616.
    • 21. Kim YH, Koh JY. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 2002; 177: 407-418.
    • 22. Medvedeva YV, Lin B, Shuttleworth CW, Weiss JH. Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J Neurosci 2009; 29: 1105-1114.
    • 23. Jiang LH, Yang W, Zou J, Beech DJ. TRPM2 channel properties, functions and therapeutic potentials. Expert Opin Ther Targets 2010; 14: 973-988.
    • 24. Jiang LH, Gamper N, Beech DJ. Properties and therapeutic potential of transient receptor potential channels with putative roles in adversity: focus on TRPC5, TRPM2 and TRPA1. Curr Drug Targets 2011; 12: 724-736.
    • 25. Sumoza-Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signalling. J Physiol 2011; 589(Part 7): 1515-1525.
    • 26. Nazıroğlu M. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 2011; 36: 355-366.
    • 27. Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett 2012; 530: 41-46.
    • 28. Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cerebr Blood Flow Metab 2011; 31: 2160-2168.
    • 29. Nakayama S, Vest R, Traystman RJ, Herson PS. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci 2013; 51: 92-98.
    • 30. Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 2013; 33: 17264-17277.
    • 31. Yu P, Wang Q, Zhang LH, Lee HC, Zhang L, Yue J. A cell permeable NPE caged ADP-ribose for studying TRPM2. PLoS One 2012; 7: e51028.
    • 32. Olah ME, Jackson MF, Li H, Perez Y, Sun HSKiyonaka S et al. Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 2009; 587(Part 5): 965-979.
    • 33. Soares LM, Schiavon AP, Milani H, de Oliveira RM. Cognitive impairment and persistent anxiety-related responses following bilateral common carotid artery occlusion in mice. Behav Brain Res 2013; 249: 28-37.
    • 34. Weiss JH, Sensi SL, Koh JY. Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 2000; 21: 395-401.
    • 35. Stork CJ, Li YV. Intracellular zinc elevation measured with a 'calcium-specific' indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J Neurosci 2006; 26: 10430-10437.
    • 36. Won SJ, Yoo BH, Brennan AM, Shin BS, Kauppinen TM, Berman AE et al. EAAC1 gene deletion alters zinc homeostasis and exacerbates neuronal injury after transient cerebral ischemia. J Neurosci 2010; 30: 15409-15418.
    • 37. McCord MC, Aizenman E. Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci USA 2013; 110: 13988-13993.
    • 38. Yu PL, Zhang ZH, Hao BX, Zhao YJ, Zhang LH, Lee HC et al. A novel fluorescent cell membrane-permeable caged cyclic ADP-ribose analogue. J Biol Chem 2012; 287: 24774-24783.
    • 39. Leng T, Shi Y, Xiong ZG, Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Progr Neurobiol 2014; 115: 189-209.
    • 40. Szewczyk B. Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 2013; 5: 33.
    • 41. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159-163.
    • 42. Hwang JJ, Lee SJ, Kim TY, Cho JH, Koh JY. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J Neurosci 2008; 28: 3114-3122.
    • 43. Lerma J, Morales M, Ibarz JM, Somohano F. Rectification properties and Ca2+ permeability of glutamate receptor channels in hippocampal cells. Eur J Neurosci 1994; 6: 1080-1088.
    • 44. Wenthold RJ, Petralia RS, Blahos J II, Niedzielski AS. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 1996; 16: 1982-1989.
    • 45. Ogoshi F, Weiss JH. Heterogeneity of Ca2+-permeable AMPA/kainate channel expression in hippocampal pyramidal neurons: fluorescence imaging and immunocytochemical assessment. J Neurosci 2003; 23: 10521-10530.
    • 46. Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 2009; 62: 254-268.
    • 47. Man HY. GluA2-lacking, calcium-permeable AMPA receptors - inducers of plasticity? Curr Opin Neurobiol 2011; 21: 291-298.
    • 48. Rozov A, Sprengel R, Seeburg PH. GluA2-lacking AMPA receptors in hippocampal CA1 cell synapses: evidence from gene-targeted mice. Front Mol Neurosci 2012; 5: 22.
    • 49. Blanco-Suarez E, Hanley JG. Distinct subunit-specific alpha-amino-3-hydroxy- 5-methyl4-isoxazolepropionic acid (AMPA) receptor trafficking mechanisms in cultured cortical and hippocampal neurons in response to oxygen and glucose deprivation. J Biol Chem 2014; 289: 4644-4651.
    • 50. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Science Signaling 2009; 2: ra23.
    • 51. Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 2000; 75: 1878-1888.
    • 52. Zou J, Ainscough JF, Yang W, Sedo A, Yu SP, Mei ZZ et al. A differential role of macrophage TRPM2 channels in Ca2+ signaling and cell death in early responses to H2O2. Am J Physiology Cell Physiol 2013; 305: C61-C69.
    • 53. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protocols 2006; 1: 848-858.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    62
    62%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article