LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Jing; Guo, Shen-Zhen; Don, Yu-Bao; Rao, Li; Jin, Yun; Yu, Guang-Ao; Hartl, Frantisek; Liu, Sheng Hua (2017)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
Homodinuclear nonlinear complexes [{M(dppe)Cp*}2{μ-(-C≡C)2X}] (X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N',-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1H, 13C and 31P NMR and single crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry (CV), square wave voltammetry (SWV), UV-vis-NIR spectroelectrochemistry and very informative IR spectroelectrochemistry in the C≡C-stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal‒ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homobimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a]+ with an indistinctive IVCT character. Finally, the third anodic waves in the voltammetric responses of the homobimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 682 (1) (a) Ren, T. Diruthenium σ-alkynyl compounds: a new class of 683 conjugated organometallics. Organometallics 2005, 24, 4854−4870.
    • 684 (b) Qi, H.; Noll, B.; Snider, G. L.; Lu, Y.; Lent, S. S.; Fehlner, T. P.; 685 Gupta, A. Dependence of field switched ordered arrays of dinuclear 686 mixed-valence complexes on the distance between the redox centers 687 and the size of the counterions. J. Am. Chem. Soc. 2005, 127, 15218− 688 15227. (c) Schwab, P. F. H.; Smith, J. R.; Michl, J. Synthesis and 689 properties of molecular rods. 2. Zig-zag rods. Chem. Rev. 2005, 105, 690 1197−1279. (d) Burgun, A.; Ellis, B. G.; Roisnel, T.; Skelton, B. W.; 691 Bruce, M. I.; Lapinte, C. From molecular wires to molecular resistors: 692 TCNE, a class-III/class-II mixed-valence chemical switch. Organo693 metallics 2014, 33, 4209−4219. (e) Blum, A. S.; Ren, T.; Parish, D. A.; 694 Trammell, S. A.; Moore, M. H.; Kushmerick, J. G.; Xu, G. L.; 695 Deschamps, J. R.; Pollack, S. K.; Shashidhar, R. Ru2(ap)4 (σ- 696 oligo(phenyleneethynyl)) molecular wires: synthesis and electronic 697 characterization. J. Am. Chem. Soc. 2005, 127, 10010−10011.
    • 698 (2) (a) Crutchley, R. J. Intervalence charge transfer and electron 699 exchange studies of dinuclear ruthenium complexes. Adv. Inorg. Chem.
    • 700 1994, 41, 273−325. (b) Schwab, P. F. H.; Levin, M. D.; Michl, J.
    • 701 Molecular rods. 1. Simple axial rods. Chem. Rev. 1999, 99, 1863−1933.
    • 702 (c) Xu, G. L.; Crutchley, R. J.; DeRosa, M. C.; Pan, Q. J.; Zhang, H. X.; 703 Wang, X.; Ren, T. Strong electronic couplings between ferrocenyl 704 centers mediated by bis-ethynyl/butadiynyl diruthenium bridges. J.
    • 705 Am. Chem. Soc. 2005, 127, 13354−13365. (d) Zhu, X. X.; Ou, Y. P.; 706 Zhang, J.; Xia, J. L.; Yin, J.; Yu, G.-A.; Liu, S. H. Dithia[3.3]- 707 paracyclophane-based monometal ruthenium acetylide complexes: 708 synthesis, characterization and substituent effects. Dalton Trans.
    • 709 2013, 42, 7177−7189. (e) Xia, J. L.; Man, W. Y.; Zhu, X.; Zhang, 710 C.; Jin, G.; Schauer, P. A.; Fox, M. A.; Yin, J.; Yu, G.; Low, P. J.; Liu, S.
    • 1195 Organometallics 2000, 19, 5235−5237.
    • 1196 (31) (a) Lambert, C.; Nöll, G. The class II/III transition in 1197 triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434−8442.
    • 1198 (b) Cheng, H.-C.; Chiu, K. Y.; Lu, S. H.; Chen, C.-C.; Lee, Y. W.; 1199 Yang, T.-F.; Kuo, M. Y.; Chen, P. P.-Y.; Su, Y. O. Linear 1200 oligoarylamines: electrochemical, EPR, and computational studies of 1201 their oxidative states. J. Phys. Chem. A 2015, 119, 1933−1942.
    • 1202 (32) (a) Parthey, M.; Gluyas, J. B. G.; Fox, M. A.; Low, P. J.; Kaupp, 1203 M. Mixed-valence ruthenium complexes rotating through a conforma1204 tional robin-day continuum. Chem. - Eur. J. 2014, 20, 6895−6908.
    • 1205 (b) Marqueś-Gonzaĺez, S.; Parthey, M.; Yufit, D. S.; Howard, J. A. K.; 1206 Kaupp, M.; Low, P. J. Combined spectroscopic and quantum chemical 1207 study of [trans-Ru(CCC6H4R1-4)2(dppe)2]n+ and [trans-Ru (C 1208 CC6H4R1-4)(CCC6H4R2-4) (dppe)2]n+ (n= 0, 1) complexes: 1209 interpretations beyond the lowest energy conformer paradigm.
    • 1210 Organometallics 2014, 33, 4947−4963.
    • 1211 (33) (a) Hush, N. S. Intervalence-transfer absorption. Part 2.
    • 1212 Theoretical considerations and spectroscopic data. Prog. Inorg. Chem.
    • 1213 1967, 8, 391−444. (b) Hush, N. S. Distance dependence of electron 1214 transfer rates. Coord. Chem. Rev. 1985, 64, 135−157. (c) Hush, N. S.
    • 1215 Homogeneous and heterogeneous optical and thermal electron 1216 transfer. Electrochim. Acta 1968, 13, 1005−1023.
    • 1217 (34) (a) Hamon, P.; Justaud, F.; Cador, O.; Hapiot, P.; Rigaut, S.; 1218 Toupet, L.; Ouahab, L.; Stueger, H.; Hamon, J.-R.; Lapinte, C. Redox1219 active organometallics: magnetic and electronic couplings through 1220 carbon- silicon hybrid molecular connectors. J. Am. Chem. Soc. 2008, 1221 130, 17372−17383. (b) Paul, F.; Toupet, L.; Theṕot, J.-Y.; Costuas, 1222 K.; Halet, J.-F.; Lapinte, C. Electron-rich piano-stool iron σ-acetylides.
    • 1223 Electronic structures of arylalkynyl iron (III) radical cations.
    • 1224 Organometallics 2005, 24, 5464−5478.
    • 1225 (35) Shi, L. Q.; He, C.; Zhu, D. F.; He, Q. G.; Li, Y.; Chen, Y.; Sun, 1226 Y. X.; Fu, Y. Y.; Wen, D.; Cao, H. M.; Cheng, J. G. High performance 1227 aniline vapor detection based on multi-branched fluorescent triphenyl1228 amine-benzothiadiazole derivatives: branch effect and aggregation 1229 control of the sensing performance. J. Mater. Chem. 2012, 22, 11629− 1230 11635.
    • 1231 (36) Sirohi, R.; Kim, D. H.; Yu, S.-C.; Lee, S. H. Novel di-anchoring 1232 dye for DSSC by bridging of two mono anchoring dye molecules: a 1233 conformational approach to reduce aggregation. Dyes Pigm. 2012, 92, 1234 1132−1137.
    • 1235 (37) Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H.
    • 1236 Syntheses, structures, and spectro-electrochemistry of {Cp*(PP)Ru}- 1237 CCCC{Ru(PP) Cp*}(PP= dppm, dppe) and their mono-and 1238 dications. Organometallics 2003, 22, 3184−3198.
    • 1239 (38) Roger, C.; Hamon, P.; Toupet, L.; Rabaa,̂ H.; Saillard, J.-Y.; 1240 Hamon, J.-R.; Lapinte, C. Alkyl (pentamethylcyclopentadienyl)(1, 2- 1241 bis (diphenylphosphino)-ethane) iron (III) 17-electron complexes: 1242 synthesis, NMR and magnetic properties, and EHMO calculations.
    • 1243 Organometallics 1991, 10, 1045−1054.
    • 1244 (39) Fang, Z.; Samoc, M.; Webster, R. D.; Samoc, A.; Lai, Y. H.
    • 1245 Triphenylamine derivatized phenylacetylene macrocycle with large 1246 two-photon absorption cross-section. Tetrahedron Lett. 2012, 53, 1247 4885−4888.
    • 1248 (40) Sheldrick, G. M. SHELXS-97, a Program for Crystal Structure 1249 Solution; University of Göttingen: Göttingen, Germany, 1997.
    • 1250 (41) Sheldrick, G. M. SHELXL-97, a Program for Crystal Structure 1251 Refinement; University of Göttingen, Göttingen, Germany, 1997.
    • 1252 (42) Krejcí̌k, M.; Daneǩ, M.; Hartl, F. Simple construction of an 1253 infrared optically transparent thin-layer electrochemical cell: Applica1254 tions to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3 1255 (3,5-di-t-butyl-catecholate)−. J. Electroanal. Chem. Interfacial Electro1256 chem. 1991, 317, 179−187.
    • 1257 (43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; 1258 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, 1259 B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article